摘要:
A method of forming a non-volatile memory device may include forming a fin protruding from a substrate, forming a tunnel insulating layer on portions of the fin, and forming a floating gate on the tunnel insulting layer so that the tunnel insulating layer is between the floating gate and the fin. A dielectric layer may be formed on the floating gate so that the floating gate is between the dielectric layer and the fin, and a control gate electrode may be formed on the dielectric layer so that the dielectric layer is between the control gate and the fin. Related devices are also discussed.
摘要:
A method of forming a non-volatile memory device may include forming a fin protruding from a substrate, forming a tunnel insulating layer on portions of the fin, and forming a floating gate on the tunnel insulting layer so that the tunnel insulating layer is between the floating gate and the fin. A dielectric layer may be formed on the floating gate so that the floating gate is between the dielectric layer and the fin, and a control gate electrode may be formed on the dielectric layer so that the dielectric layer is between the control gate and the fin. Related devices are also discussed.
摘要:
A non-volatile memory cell includes a semiconductor substrate having a fin-shaped active region extending therefrom. A tunnel dielectric layer is provided, which extends on opposing sidewalls and an upper surface of the fin-shaped active region. A floating gate electrode is provided on the tunnel dielectric layer. This floating gate electrode has at least a partial groove therein. An inter-gate dielectric layer is also provided. This inter-gate dielectric layer extends on the floating gate electrode and into the at least a partial groove. A control gate electrode is provided, which extends on the inter-gate dielectric layer and into the at least a partial groove.
摘要:
Provided are methods for fabricating semiconductor devices incorporating a fin-FET structure that provides body-bias control, exhibits some characteristic advantages associated with SOI structures, provides increased operating current and/or reduced contact resistance. The methods for fabricating semiconductor devices include forming insulating spacers on the sidewalls of a protruding portion of a first insulation film; forming a second trench by removing exposed regions of the semiconductor substrate using the insulating spacers as an etch mask, and thus forming fins in contact with and supported by the first insulation film. After forming the fins, a third insulation film is formed to fill the second trench and support the fins. A portion of the first insulation film is then removed to open a space between the fins in which additional structures including gate dielectrics, gate electrodes and additional contact, insulating and storage node structures may be formed.
摘要:
Provided are methods for fabricating semiconductor devices incorporating a fin-FET structure that provides body-bias control, exhibits some characteristic advantages associated with SOI structures, provides increased operating current and/or reduced contact resistance. The methods for fabricating semiconductor devices include forming insulating spacers on the sidewalls of a protruding portion of a first insulation film; forming a second trench by removing exposed regions of the semiconductor substrate using the insulating spacers as an etch mask, and thus forming fins in contact with and supported by the first insulation film. After forming the fins, a third insulation film is formed to fill the second trench and support the fins. A portion of the first insulation film is then removed to open a space between the fins in which additional structures including gate dielectrics, gate electrodes and additional contact, insulating and storage node structures may be formed.
摘要:
Provided are methods for fabricating semiconductor devices incorporating a fin-FET structure that provides body-bias control, exhibits some characteristic advantages associated with SOI structures, provides increased operating current and/or reduced contact resistance. The methods for fabricating semiconductor devices include forming insulating spacers on the sidewalls of a protruding portion of a first insulation film; forming a second trench by removing exposed regions of the semiconductor substrate using the insulating spacers as an etch mask, and thus forming fins in contact with and supported by the first insulation film. After forming the fins, a third insulation film is formed to fill the second trench and support the fins. A portion of the first insulation film is then removed to open a space between the fins in which additional structures including gate dielectrics, gate electrodes and additional contact, insulating and storage node structures may be formed.
摘要:
A method of forming a non-volatile memory device may include forming a fin protruding from a substrate, forming a tunnel insulating layer on portions of the fin, and forming a floating gate on the tunnel insulting layer so that the tunnel insulating layer is between the floating gate and the fin. A dielectric layer may be formed on the floating gate so that the floating gate is between the dielectric layer and the fin, and a control gate electrode may be formed on the dielectric layer so that the dielectric layer is between the control gate and the fin. Related devices are also discussed.
摘要:
A non-volatile memory cell includes a semiconductor substrate having a fin-shaped active region extending therefrom. A tunnel dielectric layer is provided, which extends on opposing sidewalls and an upper surface of the fin-shaped active region. A floating gate electrode is provided on the tunnel dielectric layer. This floating gate electrode has at least a partial groove therein. An inter-gate dielectric layer is also provided. This inter-gate dielectric layer extends on the floating gate electrode and into the at least a partial groove. A control gate electrode is provided, which extends on the inter-gate dielectric layer and into the at least a partial groove.
摘要:
Provided are methods for fabricating semiconductor devices incorporating a fin-FET structure that provides body-bias control, exhibits some characteristic advantages associated with SOI structures, provides increased operating current and/or reduced contact resistance. The methods for fabricating semiconductor devices include forming insulating spacers on the sidewalls of a protruding portion of a first insulation film; forming a second trench by removing exposed regions of the semiconductor substrate using the insulating spacers as an etch mask, and thus forming fins in contact with and supported by the first insulation film. After forming the fins, a third insulation film is formed to fill the second trench and support the fins. A portion of the first insulation film is then removed to open a space between the fins in which additional structures including gate dielectrics, gate electrodes and additional contact, insulating and storage node structures may be formed.
摘要:
A method of operating a NAND flash memory device that comprising a unit string comprising a string selection transistor connected to a bit line, a cell transistor connected to the string selection transistor, and a ground selection transistor connected to the cell transistor is provided. The method comprises applying a negative bias voltage to the string selection transistor and the ground selection transistor in a stand-by mode of the NAND flash memory device.