摘要:
A sensor device (100, 2800) for detecting particles, the sensor device (100, 2800) comprising a substrate (102), a first doped region (104) formed in the substrate (102) by a first dopant of a first type of conductivity, a second doped region (106, 150) formed in the substrate (102) by a second dopant of a second type of conductivity which differs from the first type of conductivity, a depletion region (108) at a junction between the first doped region (104) and the second doped region (106, 150), a sensor active region (110) adapted to influence a property of the depletion region (108) in the presence of the particles, and a detection unit (112) adapted to detect the particles based on an electric measurement performed upon application of a predetermined reference voltage between the first doped region (104) and the second doped region (106, 150), the electric measurement being indicative of the presence of the particles in the sensor active region (110).
摘要:
A sensor device (100, 2800) for detecting particles, the sensor device (100, 2800) comprising a substrate (102), a first doped region (104) formed in the substrate (102) by a first dopant of a first type of conductivity, a second doped region (106, 150) formed in the substrate (102) by a second dopant of a second type of conductivity which differs from the first type of conductivity, a depletion region (108) at a junction between the first doped region (104) and the second doped region (106, 150), a sensor active region (110) adapted to influence a property of the depletion region (108) in the presence of the particles, and a detection unit (112) adapted to detect the particles based on an electric measurement performed upon application of a predetermined reference voltage between the first doped region (104) and the second doped region (106, 150), the electric measurement being indicative of the presence of the particles in the sensor active region (110).
摘要:
A non-volatile memory device on a substrate layer (2) comprises source and drain regions (3) and a channel region (4). The source and drain regions (3) and the channel region (4) are arranged in a semiconductor layer (20) on the substrate layer (2). The channel region (4) is fin-shaped and extends longitudinally (X) between the source region and the drain region (3). The channel region (4) comprises two fin portions (4a, 4b) and an intra-fin space (10), the fin portions (4a, 4b) extending in the longitudinal direction (X) and being spaced apart, and the intra-fin space (10) being located in between the fin portions (4a, 4b), and a charge storage area (11, 12; 15, 12) is located in the intra-fin space (10) between the fin portions (4a, 4b).
摘要:
A read only memory is manufactured with a plurality of transistors (4) on a semiconductor substrate (2). A low-k dielectric (10) and interconnects (14) are provided over the transistors (4). To program the read only memory, the low-k dielectric is implanted with ions (22) in unmasked regions (20) leaving the dielectric unimplanted in masked regions (18). The memory thus formed is difficult to reverse engineer.
摘要:
A method of manufacturing a semiconductor device (1200), the method comprising forming a sacrificial pattern having a recess on a substrate (402), filling the recess and covering the substrate and the sacrificial pattern with a semiconductor structure, forming an annular trench in the semiconductor structure to expose a portion of the sacrificial pattern and to separate material (904) of the semiconductor structure enclosed by the annular trench from material (906) of the semiconductor structure surrounding the annular trench, removing the exposed sacrificial pattern to expose material of the semiconductor structure filling the recess, and converting the exposed material of the semiconductor structure filling the recess into electrically insulting material (1202).
摘要:
A planar extended drain transistor (100) is provided which comprises a control gate (102), a drain region (109), a channel region (107), and a drift region (108), wherein the drift region (108) is arranged between the channel region (107) and the drain region (109). Furthermore, the control gate (102) is at least partially buried into the channel region (107) and the drift region (108) comprises a doping material density which is lower than the doping material density of the drain region (109).
摘要:
Method of manufacturing a non-volatile memory device on a semiconductor substrate in a memory area, said non-volatile memory device comprising a cell stack of a first semiconductor layer, a charge trapping layer and an electrically conductive layer, the charge trapping layer being the intermediate layer between the first semiconductor layer and the electrically conductive layer, the charge trapping layer comprising at least a first insulating layer; the method comprising: —providing the substrate having the first semiconductor layer; —depositing the charge trapping layer; —depositing the electrically conductive layer; —patterning the cell stack to form at least two non-volatile memory cells, and —creating a shallow trench isolation in between said at least two non-volatile memory cells.
摘要:
Method of manufacturing a non-volatile memory device on a semiconductor substrate in a memory area, said non-volatile memory device comprising a cell stack of a first semiconductor layer, a charge trapping layer and an electrically conductive layer, the charge trapping layer being the intermediate layer between the first semiconductor layer and the electrically conductive layer, the charge trapping layer comprising at least a first insulating layer; the method comprising:—providing the substrate having the first semiconductor layer;—depositing the charge trapping layer;—depositing the electrically conductive layer; —patterning the cell stack to form at least two non-volatile memory cells, and—creating a shallow trench isolation in between said at least two non-volatile memory cells.
摘要:
The present invention relates to a non-volatile memory device on a substrate layer comprising semiconductor source and drain regions, a semiconductor channel region, a charge storage stack and a control gate; the channel region being fin-shaped having two sidewall portions and a top portion, and extending between the source region and the drain region; the charge storage stack being positioned between the source and drain regions and extending over the fin-shaped channel, substantially perpendicularly to the length direction of the fin-shaped channel; the control gate being in contact with the charge storage stack, wherein—an access gate is provided adjacent to one sidewall portion and separated therefrom by an intermediate gate oxide layer, and—the charge storage stack contacts the fin-shaped channel on the other sidewall portion and is separated from the channel by the intermediate gate oxide layer.
摘要:
A non-volatile memory device on a substrate layer (2) comprises source and drain regions (3) and a channel region (4). The source and drain regions (3) and the channel region (4) are arranged in a semiconductor layer (20) on the substrate layer (2). The channel region (4) is fin-shaped and extends longitudinally (X) between the source region and the drain region (3). The channel region (4) comprises two fin portions (4a, 4b) and an intra-fin space (10), the fin portions (4a, 4b) extending in the longitudinal direction (X) and being spaced apart, and the intra-fin space (10) being located in between the fin portions (4a, 4b), and a charge storage area (11, 12; 15, 12) is located in the intra-fin space (10) between the fin portions (4a, 4b).