摘要:
A system and method for a channel region is disclosed. An embodiment comprises a channel region with multiple bi-layers comprising alternating complementary materials such as layers of InAs and layers of GaSb. The alternating layers of complementary materials provide desirable band gap characteristics for the channel region as a whole that individual layers of material may not.
摘要:
Among other things, one or more techniques for forming a vertical tunnel field effect transistor (FET), and a resulting vertical tunnel FET are provided herein. In an embodiment, the vertical tunnel FET is formed by forming a core over a first type substrate region, forming a second type channel shell around a circumference greater than a core circumference, forming a gate dielectric around a circumference greater than the core circumference, forming a gate electrode around a circumference greater than the core circumference, and forming a second type region over a portion of the second type channel shell, where the second type has a doping opposite a doping of the first type. In this manner, line tunneling is enabled, thus providing enhanced tunneling efficiency for a vertical tunnel FET.
摘要:
A system and method for a channel region is disclosed. An embodiment comprises a channel region with multiple bi-layers comprising alternating complementary materials such as layers of InAs and layers of GaSb. The alternating layers of complementary materials provide desirable band gap characteristics for the channel region as a whole that individual layers of material may not.
摘要:
The present disclosure provides a semiconductor device with a strained SiGe channel and a method for fabricating such a device. In an embodiment, a semiconductor device includes a substrate including at least two isolation features, a fin substrate disposed between and above the at least two isolation features, and an epitaxial layer disposed over exposed portions of the fin substrate. According to one aspect, the epitaxial layer may be disposed over a top surface and sidewalls of the fin substrate. According to another aspect, the fin substrate may be disposed substantially completely above the at least two isolation features.
摘要:
A method is disclosed of manufacturing an integrated circuit. The method comprises providing a substrate (100) comprising a source region (102) and a drain region (104) separated by a channel region (106, 406), said channel region being covered by a gate stack separated from the channel region by a dielectric layer (110), the gate stack comprising a metal portion (112) over the dielectric layer (110) and a polysilicon portion (116) over the metal portion (112); implanting an oxide reducing dopant (130) into the polysilicon portion (116); depositing a silicidation metal (140) over the implanted polysilicon portion (116); and converting the implanted polysilicon portion (116) into a suicide portion. By fully converting the polysilicon portion (116) into a suicide portion, the dopant (130) is ‘snow-ploughed’ towards the interface between the metal portion (112) and the polysilicon portion (116) where it reacts with any oxide formed at said interface. This yields an IC having a plurality of transistors, which gates have a low enough contact resistance to facilitate radio frequency operating speeds.
摘要:
A semiconductor on insulator semiconductor device has metal or silicide source and drain contact regions (38, 40), activated source and drain regions (30, 32) and a body region (34). The structure may be a double gated SOI structure or a fully depleted (FD) SOI structure. A sharp intergace and low resistance are achieved with a process that uses spacers (28) and which fully replaces the full thickness of a semiconductor layer with the contact regions.
摘要:
A FinFET and methods for its manufacture are provided. The method of the invention provides an elegant process for manufacturing FinFETs with separated gates. It is compatible with a wide range of dielectric materials and gate electrode materials, providing that the gate electrode material(s) can be deposited conformally. Provision of at least one upstanding structure (or “dummy fin”) (40) on each side of the fin (4) serves to locally increase the thickness of the gate electrode material layer (70). In particular, as the shortest distance between each upstanding structure (40) and the respective side of the fin (4) is arranged in accordance with the invention to be less than twice the thickness of the conformal layer, the thickness of the gate electrode material layer (70) all the way across this distance between each upstanding structure (40) and the fin (4) is increased relative to that over planar regions of the substrate (2). Thus, following an anisotropic etch to remove gate electrode material (70) overlying the fin (4), some material nevertheless remains between the upstanding structures and the fin. Thus, an enlarged area of gate electrode material is formed for use as a gate contact pad.
摘要:
This invention relates to a semiconductor device (105) and a method of manufacturing this device. A preferred embodiment of the invention is a semiconductor device (105) comprising a silicon semiconductor substrate (110), an oxide layer (115) and an active layer (120). In the active layer, insulating areas (125) and an active area (127) have been formed. The active area (127) comprises a source (180), a drain (182) and a body (168). The source (180) and drain (182) also comprise source and drain extensions (184, 186). The active layer (120) is provided with a gate (170). On both sides of the gate (170), L-shaped side wall spacers are located. The source (180) and drain (182) also comprise silicide regions (190, 192). A characteristic of these regions is that they have extensions (194, 196) located under the side wall spacers (136, 138). These extensions (194, 196) strongly reduce the series resistance of the source (194) and drain (196), which significantly improves the performance of the semiconductor device (105).
摘要:
The present disclosure describes a layout for stress optimization. The layout includes a substrate, at least two fin field effect transistors (FinFET) cells formed in the substrate, a FinFET fin designed to cross the two FinFET cells, a plurality of gates formed on the substrate, and an isolation unit formed between the first FinFET cell and the second FinFET cell. The two FinFET cells include a first FinFET cell and a second FinFET cell. The FinFET fin includes a positive charge FinFET (Fin PFET) fin and a negative charge FinFET (Fin NFET) fin. The isolation unit isolates the first FinFET cell from the second FinFET cell without breaking the FinFET fin.
摘要:
A method of forming a pattern in at least one device layer in or on a substrate comprises: coating the device layer with a first photoresist layer; exposing the first photoresist using a first mask; developing the first photoresist layer to form a first pattern on the substrate; coating the substrate with a protection layer; treating the protection layer to cause a change therein where it is in contact with the first photoresist, to render the changed protection layer substantially immune to a subsequent exposure and/or developing step; coating the substrate with a second photoresist layer; exposing the second photoresist layer using a second mask; and developing the second photoresist layer to form a second pattern on the substrate without significantly affecting the first pattern in the first photoresist layer, wherein the first and second patterns together define interspersed features having a spatial frequency greater than that of the features defined in each of the first and second patterns separately. The process has particular utility in defining source, drain and fin features of finFET devices with a smaller feature size than otherwise achievable with the prevailing lithography tools.