Abstract:
Ion beams are directed to a substrate surface to expose a tapered, tilted surface in the substrate. The ion beams and the substrate are situated so that a first ion beam is incident along a first axis at a glancing angle, and a second ion beam is incident along a second axis in a plane defined by the glancing angle and at an angle with respect to the first axis. Exposure to the second ion beam tends to produced superior quality in the exposed surface such as by reducing curtain artifacts.
Abstract:
A method for TEM sample preparation and analysis that can be used in a FIB-SEM system without re-welds, unloads, user handling of the lamella, or a motorized flip stage. The method allows a dual beam FIB-SEM system with a typical tilt stage to be used to extract a sample to from a substrate, mount the sample onto a TEM sample holder capable of tilting, thin the sample using FIB milling, and rotate the sample so that the sample face is perpendicular to an electron column for STEM imaging.
Abstract:
Ion beams are directed to a substrate surface to expose a tapered, tilted surface in the substrate. The ion beams and the substrate are situated so that a first ion beam is incident along a first axis at a glancing angle, and a second ion beam is incident along a second axis in a plane defined by the glancing angle and at an angle with respect to the first axis. Exposure to the second ion beam tends to produced superior quality in the exposed surface such as by reducing curtain artifacts.
Abstract:
A method for TEM sample preparation and analysis that can be used in a FIB-SEM system without re-welds, unloads, user handling of the lamella, or a motorized flip stage. The method allows a dual beam FIB-SEM system with a typical tilt stage to be used to extract a sample to from a substrate, mount the sample onto a TEM sample holder capable of tilting, thin the sample using FIB milling, and rotate the sample so that the sample face is perpendicular to an electron column for STEM imaging.