Abstract:
A system for the removal of nitrogen from a liquid natural gas (LNG) stream. The system. comprises a feed heat changer and a stripper column. The heat receives the LNG stream and cools the LNG stream via heat exchange with a stripper column side-draw stream to yield a cooled LNG stream and a heated side-draw stream. The stripper column receives the cooled LNG stream at a first tray and the heated side-draw stream. The stripper column produces the stripper column side-draw stream, a stripper column overhead stream, and a stripper column bottom stream. The stripper column side-draw stream is taken from the stripper column at a second tray. The second tray is at least about 15 feet higher than the feed heat exchanger.
Abstract:
A system for reducing SO2 emissions comprises a hydrogenation reactor, a tail gas cooler, a contact condenser, a hydrolysis reactor, and an absorber. The hydrogenation reactor is configured to receive a Claus tail gas and convert at least a portion of SO2 in the Claus tail gas to H2S to produce a hydrogenated Claus tail gas stream. The hydrolysis reactor is configured to convert at least a portion of COS to H2S. The absorber comprises an amine-based solvent and is configured to absorb at least a portion of the H2S and recycle the H2S to the Claus plant.
Abstract:
Contemplated plants include a NGL recovery portion and a LNG liquefaction portion, wherein the NGL recovery portion provides a low-temperature and high-pressure overhead product directly to the LNG liquefaction portion. Feed gas cooling and condensation are most preferably performed using refrigeration cycles that employ refrigerants other than the demethanizer/absorber overhead product. Thus, cold demethanizer/absorber overhead product is compressed with the turbo-expansion and delivered to a liquefaction portion at significantly lower temperature and higher pressure without net compression energy expenditure.
Abstract:
A natural gas liquid plant is retrofitted with a bolt-on unit that includes an absorber that is coupled to an existing demethanizer by refrigeration produced at least in part by compression and expansion of the residue gas, wherein ethane recovery can be increased to at least 99% and propane recovery is at least 99%, and where a lower ethane recovery of 96% is required, the bolt-on unit does not require the absorber, which could be optimum solution for revamping an existing facility. Contemplated configurations are especially advantageous to be used as bolt-on upgrades to existing plants.
Abstract:
A system for processing a gas stream can include an acid gas removal unit comprising a first absorber unit, a compressor, and a second absorber unit. The first absorber unit is configured to receive a feed gas stream containing organic sulfur species and acid gas components, remove at least a portion of the organic sulfur species and acid gas components using a semi-rich solvent at a first pressure, produce a semi-treated gas stream, and produce a rich solvent stream. The compressor unit is configured to compress the semi-treated gas stream from the first pressure to a higher second pressure. The second absorber unit is configured to receive the compressed semi-treated gas stream, remove at least a portion of any organic sulfur species and acid gas components present in the compressed semi-treated gas stream using a lean solvent, produce the semi-rich solvent stream, and produce a treated gas stream.
Abstract:
A LNG liquefaction plant includes a propane recovery unit including an inlet for a feed gas, a first outlet for a LPG, and a second outlet for an ethane-rich feed gas, an ethane recovery unit including an inlet coupled to the second outlet for the ethane-rich feed gas, a first outlet for an ethane liquid, and a second outlet for a methane-rich feed gas, and a LNG liquefaction unit including an inlet coupled to the second outlet for the methane-rich feed gas, a refrigerant to cool the methane-rich feed gas, and an outlet for a LNG. The LNG plant may also include a stripper, an absorber, and a separator configured to separate the feed gas into a stripper liquid and an absorber vapor. The stripper liquid can be converted to an overhead stream used as a reflux stream to the absorber.
Abstract:
A system for processing a gas stream can include an acid gas removal unit comprising a first absorber unit, a compressor, and a second absorber unit. The first absorber unit is configured to receive a feed gas stream containing organic sulfur species and acid gas components, remove at least a portion of the organic sulfur species and acid gas components using a semi-rich solvent at a first pressure, produce a semi-treated gas stream, and produce a rich solvent stream. The compressor unit is configured to compress the semi-treated gas stream from the first pressure to a higher second pressure. The second absorber unit is configured to receive the compressed semi-treated gas stream, remove at least a portion of any organic sulfur species and acid gas components present in the compressed semi-treated gas stream using a lean solvent, produce the semi-rich solvent stream, and produce a treated gas stream.
Abstract:
A method for removing heavy hydrocarbons from a feed gas by: feeding, into an absorber, a top reflux stream and a second reflux stream below the top reflux stream, wherein the absorber produces an absorber bottom product stream and an absorber overhead product stream; depressurizing and feeding the absorber bottom product stream to a stripper to produce a stripper bottom product stream and a stripper overhead product stream; cooling and feeding a portion of the absorber overhead product stream back to the absorber as the top reflux stream; and pressurizing and feeding the stripper overhead product stream back to the absorber as the second reflux stream. Systems for carrying out the method are also provided.
Abstract:
A LNG liquefaction plant includes a propane recovery unit including an inlet for a feed gas, a first outlet for a LPG, and a second outlet for an ethane-rich feed gas, an ethane recovery unit including an inlet coupled to the second outlet for the ethane-rich feed gas, a first outlet for an ethane liquid, and a second outlet for a methane-rich feed gas, and a LNG liquefaction unit including an inlet coupled to the second outlet for the methane-rich feed gas, a refrigerant to cool the methane-rich feed gas, and an outlet for a LNG. The LNG plant may also include a stripper, an absorber, and a separator configured to separate the feed gas into a stripper liquid and an absorber vapor. The stripper liquid can be converted to an overhead stream used as a reflux stream to the absorber.
Abstract:
Embodiments relate generally to methods and systems for processing a gas stream and for removing mercaptans from a feed stream. A method may comprise compressing a semi-treated gas stream, wherein the semi-treated gas stream comprises organic sulfur species and acid gas components; contacting the semi-treated gas stream with a lean solvent; removing at least a portion of the organic sulfur species and acid gas components from the semi-treated gas stream to produce a treated gas stream and a semi-rich solvent stream; contacting a feed gas stream with the semi-rich solvent, wherein the feed gas stream comprises organic sulfur species and acid gas components; and removing at least a portion of the organic sulfur species and acid gas components from the feed gas stream to produce the semi-treated gas stream based on contacting the semi-rich solvent with the feed gas stream.