Abstract:
An off-axis transmission pump is driven via an idler gear. To reduce the transmission of gear noise, the idler gear is supported by a plastic cover. The plastic cover includes a molded-in metal insert to harden the cover in the vicinity of the idler gear. The metal insert may include inner and outer sleeves which may be connected by radially extending arms. The plastic cover is located relative to a front cover by at least two locating features.
Abstract:
A vehicle according to the present disclosure includes a shift-by-wire transmission, a pressure source configured to selectively provide hydraulic pressure in the absence of engine power, an internal combustion engine, and a controller. The shift-by-wire transmission includes a hydraulic actuator, and the electric pump is in fluid communication with the actuator. The controller is configured to, in response to a driver input and the engine being off, control the pressure source to provide hydraulic pressure to the hydraulic actuator.
Abstract:
A transmission diagnostic system includes a pivotable member and an actuator. The actuator has a notch with a first side, a second side, and an opening between the two sides. The width of the opening is greater than a width of the pivotable member. The pivotable member is retained within the notch, and the actuator is configured to selectively pivot the pivotable member between an engaged position, corresponding to a PARK gear, and a disengaged position, corresponding to a gear other than PARK. The transmission diagnostic system also includes a biasing spring configured to exert a biasing torque on the pivotable member to bias the pivotable member toward the first side of the notch. The transmission diagnostic system further includes a controller configured to generate at least one diagnostic signal in response to the pivotable member not being in contact with the first side of the notch.
Abstract:
A vehicle includes both a transmission park mechanism and an electronic parking brake. As a failure management strategy, a controller monitors vehicle movement to verify that the park mechanism is successfully restraining the vehicle against movement. Specifically, when the driver releases the brake pedal with the transmission park mechanism commanded to restrain the vehicle, the controller waits for a predetermined amount of time. If the vehicle moves during this time, the controller commands application of the electronic parking brake. The controller may also command application of the electronic parking brake if the vehicle does not come to a stop after the transmission park mechanism is commanded to restrain the vehicle.
Abstract:
Emergency shifting is performed in a shift-by-wire (SBW) vehicle during a power failure of a main electrical supply that includes a battery. A shift actuator is configured to mechanically couple to the transmission in order to execute shift events between a plurality of shift positions (including park and neutral) using the main voltage from the main supply during normal conditions. A human-powered generator is provided for converting a manually-imparted motion to an electrical output during the power failure. A storage device (e.g., capacitor) receives the electrical output to store a power reserve to apply to the shift actuator to execute an emergency shift event in the absence of main power in response to a manual command. The generator and storage device are configured such that a maximum power reserve stored from the generator can achieve only one emergency shift event at a time.
Abstract:
A voting strategy is used to determine the mode state of a transmission when a vehicle is restarted. The transmission includes a return to park feature and a controller including at least three memories. The controller is configured to write a remembered mode state into each memory. The remembered mode state is one of a Normal mode state that allows the transmission to automatically shift to Park, a hold mode state that causes the transmission to remain in Neutral and not automatically shift to Park upon detecting a triggering event or other mode states. The controller reads each memory and, when at least two of the remembered mode states are the same mode state, causes the transmission to enter a mode state corresponding to the same mode state.
Abstract:
Emergency shifting is performed in a shift-by-wire (SBW) vehicle during a power failure of a main electrical supply that includes a battery. A shift actuator is configured to mechanically couple to the transmission in order to execute shift events between a plurality of shift positions (including park and neutral) using the main voltage from the main supply during normal conditions. A human-powered generator is provided for converting a manually-imparted motion to an electrical output during the power failure. A storage device (e.g., capacitor) receives the electrical output to store a power reserve to apply to the shift actuator to execute an emergency shift event in the absence of main power in response to a manual command. The generator and storage device are configured such that a maximum power reserve stored from the generator can achieve only one emergency shift event at a time.
Abstract:
A fastener having a head is provided. The fastener includes a unidirectional inner drive including an inner lobe having an inner ramp surface adjacent to an inner drive abutment surface adapted to receive a torque to effect a clockwise rotation of the fastener. The fastener further includes a concentric unidirectional outer drive including an outer lobe having an outer ramp surface adjacent to an outer drive abutment surface adapted to receive an inverse torque to effect a counter-clockwise rotation of the fastener.
Abstract:
A voting strategy is used to determine the mode state of a transmission when a vehicle is restarted. The transmission includes a return to park feature and a controller including at least three memories. The controller is configured to write a remembered mode state into each memory. The remembered mode state is one of a Normal mode state that allows the transmission to automatically shift to Park, a hold mode state that causes the transmission to remain in Neutral and not automatically shift to Park upon detecting a triggering event or other mode states. The controller reads each memory and, when at least two of the remembered mode states are the same mode state, causes the transmission to enter a mode state corresponding to the same mode state.
Abstract:
A vehicle includes both a transmission park mechanism and an electronic parking brake. As a failure management strategy, a controller monitors vehicle movement to verify that the park mechanism is successfully restraining the vehicle against movement. Specifically, when the driver releases the brake pedal with the transmission park mechanism commanded to restrain the vehicle, the controller waits for a predetermined amount of time. If the vehicle moves during this time, the controller commands application of the electronic parking brake. The controller may also command application of the electronic parking brake if the vehicle does not come to a stop after the transmission park mechanism is commanded to restrain the vehicle.