Abstract:
A system includes a personal device in communication with a vehicle component and an on-board server and including a processor programmed to receive, from the component, an advertisement defining a low-footprint interface template and a unique identifier indicative of a corresponding rich content interface template, send, to the server, a request including the identifier to provide the corresponding template, and, upon receipt of the corresponding template, render a rich content user interface based on the corresponding template.
Abstract:
A first horizontal axis of a plane of a display is determined based on a user input. Angular movement data of the display is collected. A second horizontal axis of the plane of the display is determined based on the angular movement data. A second user input on the display is mapped based on the second horizontal axis.
Abstract:
An input is received from a user selecting one or more of a plurality of icons on a non-wearable user device display. A wearable device is instructed to display the selected icons on a wearable device display. A vehicle component is actuated based on a second input selecting one of the icons displayed on the wearable device display.
Abstract:
A vehicle gesture system includes a processor connected to a transceiver and programmed to detect a wireless device associated with a vehicle feature settings interface for a first vehicle feature. The processor is further programmed to detect the wireless device based on received user input at the vehicle feature settings interface of the first vehicle feature. The processor is further programmed to control a setting for the first vehicle feature based on received data associated with one or more gestures made using the wireless device.
Abstract:
A user sleep score is determined based on user biometric data. An operation that is an action performable based on input on a user device is identified. Based on the operation and the sleep score, a display item is presented on a display of a second computer that is a wearable device.
Abstract:
Biometric data are collected about a user in a vehicle. A user is prompted to provide an input on a wearable device to identify an object based on the biometric data.
Abstract:
A prompt is presented on a display of a wearable device upon detecting an event indicating a user leaving a vehicle. An input responding to the prompt is received. A vehicle door lock is instructed to move to a locked position upon receipt of the input.
Abstract:
A system includes a computer programmed to identify a plurality of audio amplitudes of an audio input. The computer is programmed to identify a plurality of time intervals of the audio input between respective identified audio amplitudes. The computer is programmed to map a haptic pattern based on identified audio amplitudes and the time intervals. The computer is programmed to actuate a motor to output the haptic pattern.
Abstract:
A system includes a wireless device processor configured to communicate wirelessly with a remote vehicle infotainment system. The processor is also configured to receive web-based control display instructions from the vehicle infotainment system. The processor is further configured to display, in a web-browser, a vehicle infotainment control interface, in accordance with the display instructions. The processor is also configured to receive vehicle infotainment control instructions through the interface and submit a request to control the vehicle infotainment system in accordance with the received control instructions.
Abstract:
A system may include a device configured to connect to a vehicle data port and a mobile device and including an alert manager. The alert manager may be configured to determine, according to a driver workload estimation, an alert mode indicative of how to process a vehicle user-interface request to access a mobile device feature for use via the vehicle user-interface, and access the feature of the mobile device in accordance with the alert mode.