Abstract:
The invention relates to modified reinforcement fibers for use in a variety of applications. The modification includes crimping linear or straight reinforcement fibers to create a deformed or different shaped reinforcement fiber. Examples of the shaped fibers resulting from crimping include w-shaped, s-shaped, z-shaped and wedge-shaped.
Abstract:
The present invention relates to elastomeric polymer fiber reinforced asphalt cement concrete for use in a variety of applications. In particular, the reinforcement fibers are effective to reduce or preclude voids and/or cracks formed in the asphalt upon placement and to render a self-healing property to the placed asphalt.
Abstract:
The invention relates to radiation-treated reinforcement fibers, reinforced asphalt and portland cement concrete, and grout, methods for producing the same and application for their use. The radiation treatment includes exposing reinforcement fibers to electromagnetic energy, e.g., gamma rays, and/or electron-beam (E-beam) radiation. As a result of the treatment, the radiation-treated reinforcement fibers have a modified or deformed surface, e.g., an abraded and/or porous surface, as compared to reinforcement fibers without a radiation treatment.
Abstract:
The invention relates to composite reinforcing fibers infused or compounded with pulp fibers and/or nano-fibers. The composite reinforcing fibers are composed of polymer, e.g., polymer resin. The pulp fibers and/or nano-fibers impart improved tensile strength to the composite reinforcing fibers, as well as a resulting product formed by the fibers. The composite reinforcing fibers may be used in a variety of cementitious applications, wherein traditional reinforcing fibers are typically used.
Abstract:
The invention relates to composite reinforcing fibers infused or compounded with pulp fibers and/or nano-fibers. The composite reinforcing fibers are composed of polymer, e.g., polymer resin. The pulp fibers and/or nano-fibers impart improved tensile strength to the composite reinforcing fibers, as well as a resulting product formed by the fibers. The composite reinforcing fibers may be used in a variety of cementitious applications, wherein traditional reinforcing fibers are typically used.
Abstract:
The invention relates to modified reinforcement fibers for use in a variety of applications. The modification includes crimping linear or straight reinforcement fibers to create a deformed or different shaped reinforcement fiber. Examples of the shaped fibers resulting from crimping include w-shaped, s-shaped, z-shaped and wedge-shaped.