Abstract:
A power supply apparatus including a master power converter and a slave power converter is provided. The master power converter generates a main power having a working voltage level. The slave power converter generates an auxiliary power. According to its operation state, the master power converter provides a corresponding control signal to the slave power converter. If the master power converter determines the operation state is a first operation state, the slave power converter generates the auxiliary power having a voltage level lower than the working voltage level, so that the slave power converter can be operated in a no-load conversion state. If the master power converter determines the operation state is a second operation state, the slave power converter raises the voltage level of the auxiliary power to the working voltage level, so that the auxiliary power replacing the main power is supplied to a load.
Abstract:
A method for controlling a fan speed of an electronic apparatus and the electronic apparatus using the same are provided. The method includes: detecting an input voltage, an output current, and a working temperature of the electronic apparatus; calculating a target speed of the fan according to the input voltage, the output current, and the working temperature; providing a speed control signal indicating the target speed to drive the fan and obtaining a fan speed signal indicating an actual speed of the fan; and performing a close-loop control based on the fan speed signal, so that the actual speed is adjusted to the target speed.
Abstract:
A power conversion apparatus, including a transformer, a switch, an analog controller, a digital controller, and a voltage converter-based feedback circuit, is provided. The primary side of the transformer is coupled to an input voltage, and the secondary side of the transformer is coupled to an output voltage provided to a load. The switch intermittently transmits the input voltage to the primary side of the transformer. The analog controller is disposed at one of the primary side and the secondary side of the transformer and configured to control the operation of the switch in response to an analog feedback signal. The digital controller is disposed at the other one of the primary side and the secondary side and configured to generate a digital feedback signal. The voltage converter-based feedback circuit is configured to convert the digital feedback signal to the analog feedback signal based on a voltage conversion characteristic thereof.
Abstract:
A power supply system with current sharing includes a current sharing bus, a plurality of power supply units, and a plurality of controllers. The power supply units are connected to each other through the current sharing bus. Each power supply unit provides a current sharing signal value to the current sharing bus, and provides an output current to a load. Each controller receives current sharing signal values provided from other power supply units and current signal values corresponding to the output currents. When determining that the current signal value is less than a reference current sharing signal value, the controller increases an output voltage of the power supply unit to increase the output current. Otherwise, the controller decreases the output voltage to decrease the output current so that so that the output currents of the power supply units are shared to supply power to the load.
Abstract:
A power backplane assembly is adapted to be connected to a power supply. The power supply outputs a first voltage. The power backplane assembly includes a backplane body, a conversion circuit board, and an output circuit board. The backplane body is for plugging in the power supply. The conversion circuit board is electrically connected to the backplane body. The backplane body is adapted to deliver the first voltage to the conversion circuit board. The conversion circuit board converts the first voltage into a second voltage. The output circuit board is electrically connected to the conversion circuit board and includes a first output connector and a second output connector. The first output connector is configured to output the first voltage, and the second output connector is at least configured to output the second voltage. A power supply module which has the power backplane assembly is also provided.
Abstract:
A master-slave interchangeable power supply device, a power supply method, a host with the master-slave interchangeable power supply device, and a computer-readable storage medium for use in execution of the power supply method are provided. Upon receipt of a start command, a power control module and a power supply unit of the power supply device operate in a master mode and a slave mode respectively, and then the power supply device provides a working power to a master device to effect related configuration of the power supply device, so as to allow the power control module to switch to the slave mode and allow the working power to be provided to the master device. Therefore, given compliance with a specification of a communication bus, the power control module and the power supply unit, which function as peripheral devices, can perform a communicative function.
Abstract:
A master-slave interchangeable power supply device, a power supply method, a host with the master-slave interchangeable power supply device, and a computer-readable storage medium for use in execution of the power supply method are provided. Upon receipt of a start command, a power control module and a power supply unit of the power supply device operate in a master mode and a slave mode respectively, and then the power supply device provides a working power to a master device to effect related configuration of the power supply device, so as to allow the power control module to switch to the slave mode and allow the working power to be provided to the master device. Therefore, given compliance with a specification of a communication bus, the power control module and the power supply unit, which function as peripheral devices, can perform a communicative function.
Abstract:
A power conversion apparatus including a main power converter and an auxiliary power converter is provided. The main power converter converts an AC power to a first DC power, and then converts the first DC power to a DC output power. The main power converter has a first power conversion terminal for outputting the first DC power. The auxiliary power converter converts an auxiliary power to a second DC power, and then converts the second DC power to the DC output power. The auxiliary power converter has a second power conversion terminal for outputting the second DC power. The first power conversion terminal and the second power conversion terminal are commonly coupled to a DC power conversion circuit, such that the main power converter and the auxiliary power converter share the DC power conversion circuit and generate a DC output power.
Abstract:
An apparatus and a method for power supply are provided. The apparatus for power supply includes a main power circuit, an auxiliary power circuit and a power switching control circuit. The main power circuit is configured to generate a main power suitable to be provided to a first load and a second load for use. The auxiliary power circuit is configured to generate an auxiliary power suitable to be provided to the second load for use. The power switching control circuit is configured to detect a voltage difference between the main power and the auxiliary power and determine whether the apparatus meets a normal power supply condition, so as to select one of the main power and auxiliary power as a power source of the second load.
Abstract:
A power backplane assembly is adapted to be connected to a power supply. The power supply outputs a first voltage. The power backplane assembly includes a backplane body, a conversion circuit board, and an output circuit board. The backplane body is for plugging in the power supply. The conversion circuit board is electrically connected to the backplane body. The backplane body is adapted to deliver the first voltage to the conversion circuit board. The conversion circuit board converts the first voltage into a second voltage. The output circuit board is electrically connected to the conversion circuit board and includes a first output connector and a second output connector. The first output connector is configured to output the first voltage, and the second output connector is at least configured to output the second voltage. A power supply module which has the power backplane assembly is also provided.