Abstract:
Provided is a cell analysis system that can keep only a target cell fresh. A cell analysis system 1 includes: a detection device 10 that detects staining intensity of a stained cell; a collection container 20 that collects a plurality of cells whose staining intensity has been detected by the detection device 10; a control unit 40 that determines priority in acquiring image data on the basis of a detection result of the staining intensity of the stained cell; and an imaging apparatus 30 that acquires the image data of the cells collected into the collection container 20 on the basis of the priority determined by the control unit 40.
Abstract:
A cell culture observation device and a cell culture observation method which observe a plurality of culture containers and perform operations for each culture container capture an image without blurring caused by the operations for the culture container and improve the throughput of processing for the plurality of culture containers. The cell culture observation device includes a cell observation unit 30 that observes cells in each of a plurality of culture containers in which the cells are cultured, an operating unit 20 that performs a plurality of operations for each of the culture containers, and an operation content determination unit 41 that determines the content of an operation which can be performed for culture containers other than a culture container to be observed while the culture container to be observed is being observed among the plurality of operations.
Abstract:
Disclosed are a cell determination device, a cell determination method, and a non-transitory computer readable recording medium recorded with a cell determination program capable of objectively determining a state of a cell with high accuracy. The cell determination device includes: a cell information acquisition unit 31 that acquires information relating to a proliferation rate of a cell and information relating to a movement distance of the cell per unit time based on plural cell images obtained by imaging the cell in a time series manner; and a determination unit 32 that determines a state of the cell based on the information relating to the proliferation rate and the information relating to the movement distance.
Abstract:
A cell image evaluation device includes an image acquisition unit that acquires a captured image of a cell, a cell evaluation unit that evaluates the cell image, and a maturity information acquisition unit that acquires information related to maturity of the cell. The cell evaluation unit determines a method for evaluating the cell image on the basis of the information related to the maturity.
Abstract:
An observation image capturing and evaluation device includes an imaging unit that captures an image of a cell and acquires an observation image, an evaluation unit that evaluates the observation image, and a maturity information acquisition unit that acquires information related to the maturity of the cell. The imaging unit changes a method for capturing the observation image on the basis of the information related to the maturity.
Abstract:
An image generation device includes: a detection unit 43 that performs processing of detecting a specific feature from a plurality of focus images which include an observation target and are in different focus states; a determination unit 44 that determines a parameter indicating a degree of application of a region image to a combination region image in a case where the combination region image is generated from the region image, for each set of the region images in a plurality of corresponding regions respectively corresponding to the plurality of focus images, based on the specific feature detected by the detection unit 43; and a generation unit 45 that generates the combination region image by combining the region images for each of the plurality of corresponding regions based on the parameter determined by the determination unit 44.
Abstract:
Provided is an information processing apparatus including an acquiring unit that acquires cell information indicating a state of a cell from production of a pluripotent stem cell to differentiation of the pluripotent stem cell into a specific differentiated cell by differentiation induction, and process history information indicating a history of a processing process for obtaining the differentiated cell, and a deriving unit that derives differentiation potency information indicating differentiation potency of the pluripotent stem cell based on the cell information and the process history information which are acquired by the acquiring unit.
Abstract:
An observation apparatus, an observation method, and an observation program capable of capturing an image by appropriately adjusting a focus regardless of a size of an effective range in which a distance to a cultivation container can be measured within a field of view are provided. An observation apparatus includes an imaging unit 37 that images an observation target in a field of view smaller than an accommodation part 22 at a series of imaging positions and acquires a series of partial images, a measurement unit 38 that measures a distance from the imaging unit 37 to the accommodation part 22, a storage unit 44 that stores shape information of a container 20 and a series of imaging position information, a calculation unit 45 that calculates effective range information indicating an effective range in which the measurement unit 38 is capable of performing measurement before imaging within a field of view of the imaging unit 37 at the imaging positions, based on the shape information and the imaging position information, and a control unit 40 that controls a focus of the imaging unit 37 using a measurement result measured by the measurement unit 38 in the effective range and a measurement result of the measurement unit 38 in a field of view adjacent to the field of view including the effective range in a case where the effective range is smaller than or equal to a threshold value.
Abstract:
At least one of a stage on which a cultivation container 50 that contains a plurality of wells 52 is placed or an imaging optical system that includes an objective lens for forming an image of the observation target in each well 52 is moved to scan an observation position in the stage, to thereby observe the observation target. In a case where the objective lens is moved in an optical axis direction to perform an auto-focus control at each observation position, a start timing of the auto-focus control at each observation position D is changed on the basis of a boundary portion between respective wells 52 that are adjacent to each other in a scanning direction of the observation positions.
Abstract:
A microscope includes an illumination light emission unit 10 that emits illumination light, a stage 61 on which a culture container 60 is placed, an objective lens 31 on which the illumination light having passed through the culture container 60 and the stage 61 is incident, a focusing light emission unit 70 that emits focusing light, a reflected light detection unit 75 that detects reflected light due to emission of the focusing light, a distance changing unit 34 that changes a distance between the objective lens 31 and the stage 61, an autofocus control unit 51 that performs autofocus control based on the reflected light, and a focus control information acquisition unit 53 that acquires focus control information including information of the culture container 60, the amount of culture solution C, and the magnification of the objective lens 31.