Abstract:
An object of the present invention is to provide a composition for forming a thermally conductive material, from which a thermally conductive material having excellent thermally conductive properties can be obtained. In addition, another object of the present invention is to provide a thermally conductive material formed of the composition for forming a thermally conductive material, a thermally conductive sheet, and a device with a thermally conductive layer. A composition for forming a thermally conductive material of the present invention includes an epoxy compound, an inorganic substance, and a compound X containing one or more functional groups selected from the group consisting of an alkenyl group, an acrylate group, a methacrylate group, a silyl group, an acid anhydride group, a cyanate ester group, an amino group, a thiol group, and a carboxylic acid group, or having a polyamic acid structure, in which a content of the inorganic substance is 10% by mass or more with respect to a total solid content of the composition, and a content of the compound X is 10% by mass or more with respect to the total solid content of the composition.
Abstract:
The near infrared absorbing composition includes: a copper-containing polymer having a copper complex site at a polymer side chain; and a solvent, in which the copper complex site includes a site multidentate-coordinated to a copper atom and at least one selected from the group consisting of a site monodentate-coordinated to a copper atom and a counter ion to a copper complex skeleton, and a polymer main chain and a copper atom at the copper complex site are bonded to each other through the site monodentate-coordinated to a copper atom or the counter ion.
Abstract:
Provided is a near-infrared absorptive compositions which having excellent near-infrared shielding property even if they are formed into thin films, being able to apply, and inhibited transmittance of visible light loss and transmittance loss after postbaking even if they contain a higher proportion of solids such as copper complexes. The near-infrared absorptive composition comprising a copper complex, a polyfunctional polymerizable compound and a solvent, wherein the near-infrared absorptive composition has a solids content of 35 to 90% by mass.
Abstract:
Provided are a near infrared absorbing composition with which a cured film having excellent solvent resistance and thermal shock resistance can be manufactured, a near infrared cut filter, a method of manufacturing a near infrared cut filter, a solid image pickup element, a camera module, and an image display device. The near infrared absorbing composition includes: a resin A that satisfies the following condition a1; an infrared absorber B; and a solvent D. At least the resin A has a crosslinking group, or the near infrared absorbing composition further includes a compound C having a crosslinking group that is different from the resin A. condition a1: in a case where the resin A does not have a crosslinking group, a glass transition temperature of the resin A measured by differential scanning calorimetry is 0° C. to 100° C., and in a case where the resin A has a crosslinking group, a glass transition temperature of a resin having a structure in which a portion which forms a crosslinking bond in the crosslinking group of the resin A is substituted with a hydrogen atom is 0° C. to 100° C., the glass transition temperature being measured by differential scanning calorimetry.
Abstract:
An object of the present invention is to provide a near-infrared-absorbing composition capable of forming a cured film having excellent heat resistance while maintaining strong near-infrared shielding properties when a cured film is produced. The near-infrared-absorbing composition of the present invention includes a copper complex obtained by reacting two or more kinds of sulfonic acids represented by General Formula (I) described below or salts thereof with a copper component and a solvent.
Abstract:
An object of the present invention is to provide a composition capable of forming a thermally conductive material having excellent thermally conductive properties and excellent handleability in a semi-cured state. In addition, another object of the present invention is to provide a thermally conductive material, a thermally conductive sheet, and a device with a thermally conductive layer. The composition of the present invention contains a phenolic compound, an epoxy compound, a compound represented by Formula (1), and an inorganic nitride.
Abstract:
Provided are a curable composition exhibiting excellent solvent solubility while maintaining a high refractive index; an optical component using such a curable composition; and a compound. The curable composition contains a compound represented by the following Formula (1) and at least one kind selected from thermal radical polymerization initiators or photo radical polymerization initiators. In Formula (1), Ar1 to Ar4 each independently represent an aromatic ring, at least one of Ar1, . . . , or Ar4 represents a benzothiazole ring, a benzoxazole ring, an aromatic ring containing a benzothiazole ring or a benzoxazole ring, or an aromatic ring having a benzothiazolyl group or a benzoxazolyl group as a substituent, and two or more of Y1 to Y4 represent a polymerizable group.
Abstract:
Provided are a near infrared radiation-absorbing composition capable of forming a cured film having excellent heat resistance while maintaining high near infrared radiation-shielding properties, a near infrared radiation cut-off filter and a production method therefor, and a camera module and a production method therefor. The near infrared radiation-absorbing composition includes a copper compound obtained from a reaction between a siloxane (A1) having an acid group or a salt thereof and a copper component.
Abstract:
A near-infrared blocking filter includes a near-infrared absorbing substance, has a film thickness of 300 μm or less, and has a visible light transmissivity in a wavelength range of 450 nm to 550 nm of 85% or more, a light transmissivity at a wavelength of 800 nm is 20% or less, and a light transmissivity at a wavelength of 850 nm is 20% or less.