Abstract:
To suppress a decrease in the contrast caused by the reflection on the interface to the air layer without decreasing the quality of display. A reflection-type liquid crystal display device includes a light guide plate having a polarizing element stuck or adhered thereto on the side facing a reflection-type liquid crystal display panel, a source of light arranged on an end surface side of the light guide plate, and the reflection-type liquid crystal display panel arranged maintaining a predetermined gap relative to the light guide plate, wherein a light-diffusing function is imparted to the surface of the reflection-type liquid crystal display panel on the side facing the light guide plate.
Abstract:
An illumination device is provided which can reduce a movement blur and a tailing phenomenon on a motion picture display while a drop in display brightness is suppressed, and which can suppress power consumption, can be made small and light, and can prolong the lifetime, and a liquid crystal display device using the same is provided. A light source control part of a control circuit synchronizes a latch pulse signal outputted from a gate driver control part to a gate driver, and outputs light emission control signals to respective light source power supply circuits. The respective light source power supply circuits change emission states of cold cathode fluorescent lamps to one of a first to a third emission states on the basis of the inputted light emission control signals, and illuminate an LCD panel from a rear surface of a display area. A first stage emission state is a non-lighting state, a second stage emission state is a maximum lighting state in which maximum lighting brightness is obtained, and a third emission state is an intermediate lighting state in which brightness of about one half of the second stage emission state is obtained.
Abstract:
There is provided a liquid crystal display having good display characteristics and a method of driving the same. Pixel data is written in plural pixels on one gate bus line at a top end of a display area at a first point in time on a line sequential basis. At a second point in time, the writing of pixel data in pixels in an upper part of the screen is completed, and writing of pixel data in pixels in a lower part of the screen is started. At a third point in time, the writing of pixel data in the pixels in the lower part of the screen is completed. A fluorescent tube on the upper side of the screen is turned on for a period between a third point in time after the writing of pixel data in the upper part of the screen and a fourth point in time before writing of pixel data for the next frame is started and is turned off in other periods. A fluorescent tube on the lower side of the screen is turned on for a period between a fifth point in time after the writing of pixel data in the lower part of the screen in the preceding frame and a sixth point in time before writing of pixel data in the lower part of the screen is started and is turned off in other periods.
Abstract:
The present invention relates to a surface lighting device, in which plural light-emitting elements corresponding to plural colors including at least red, green and blue, that is, LEDs (Light Emitting Diodes) capable of emitting light of primary colors are arranged to form a surface light source, and a liquid crystal display device which attains high luminance even on a large display area by including the surface lighting device. The surface lighting device is characterized by at least including: a surface light source consisting of light-emitting elements corresponding to plural colors at least including three primary colors of light; a reflection plate which is set among the light-emitting elements; a substrate on which the light-emitting elements and the reflection plate are set; and a diffusion plate which is located above the light-emitting elements and the reflection plate, and in that the light-emitting elements are arranged with a cover rate of the substrate by the reflection plates improved or an irradiation angle, at which an amount of light of the light-emitting elements corresponding to at least one color is maximized, is set according to an interval between the diffusion plate and the substrate.
Abstract:
There is provided a light source device, used in a display device and the like, having a high light emitting efficiency. The light source device has an electric discharge tube containing mercury and electrodes at both ends. A heat conducting member is attached to and is in contact with a part of the electric discharge tube. The heat conducting member locally cools the tube. The heat conducting member and the tube satisfy the following relationship, 6null10null5/S
Abstract translation:提供了具有高发光效率的用于显示装置等的光源装置。 光源装置具有在两端具有汞和电极的放电管。 导热构件附接到放电管的一部分并与其接触。 导热部件局部冷却管子。 导热构件和管满足以下关系:6×10 -5 / S <(1 / k1-1 / k2)W,其中放电管的横截面积为S(m 2) 放电管的单位长度的发热量为W(W),非冷却部的导热率为k1(W / K / m),冷却部的导热率为k2(W / K / m)。
Abstract:
A lighting unit and a liquid crystal display device which can improve the efficiency of usable light. The lighting unit includes a light source, a light guide plate, and a truncated pyramid located between the light guide plate and the light source. The truncated pyramid has a base, a top smaller than the base, and a slope linking the base and the top. The light source is placed in close contact with the top of the truncated pyramid, and the light guide plate is placed in close contact with the base of the truncated pyramid. Light is propagated from a light emitting part of the light source to the light guide plate without passing through any air layer. Also, an unnecessary light removing structure is provided in the light guide plate near the incidence surface thereof.