Abstract:
The invention relates to a display apparatus used as a display part of an information equipment and an illumination device used for the same, and has an object to provide the display apparatus which can obtain excellent display characteristics and the illumination device used for the same. The illumination device includes plural optical waveguides which include diffusion reflecting layers for diffusing and reflecting guided light, light emission surfaces for emitting the diffused and reflected light, and plural light-emitting areas in which the diffusion reflecting layers are formed and which are separated from each other, and which are stacked so that the plural light-emitting areas are disposed almost complementarily when viewed in a direction vertical to the light emission surfaces, and plural light sources respectively disposed at ends of the plural optical waveguides.
Abstract:
This invention relates to a method of manufacturing a liquid crystal display panel, wherein a gap between substrates is to be maintained as designed. In a method of manufacturing a liquid crystal display panel, comprising a step of coating a resin film on one of a pair of substrates facing each other and patterning the resin film to form pillar spacers, a step of optically cleaning the surface of the substrate where the pillar spacers have been formed, and a step of forming an alignment film on the optically cleaned substrate, in the optical cleaning, a light source having an emission peak in a wavelength range of 180 nm or less or 260 nm or more and not having an emission peak in a wavelength range from 180 nm to 260 nm is used.
Abstract:
A liquid crystal display device includes a liquid crystal layer confined between first and second substrates, an electrode formed on the first substrate so as to create an electric field acting generally parallel to a plane of the liquid crystal layer, and a plurality of pixels being defined in the liquid crystal layer, wherein each of the pixels includes therein a plurality of domains having respective orientations for liquid crystal molecules, such that the orientation is different between a domain and another domain within the plane of the liquid crystal layer.
Abstract:
The liquid crystal display device has a liquid crystal panel, a light guiding plate for illuminating the liquid crystal panel, a bezel covering a periphery of the liquid crystal panel, a frame on which the liquid crystal panel is mounted, a screw for securing a side wall of the bezel to the frame, and a rear cover having a portion which extends from a back side of the light guiding plate beyond the position of the screw and which has a hole through which the screw passes. A portion of the side surface fixing mechanism in the vicinity of the fixing screw is reinforced by the portion of the rear cover which is coupled with the side wall of the bezel and the side wall of the frame.
Abstract:
A method of driving a liquid crystal display panel of the type of active matrix which effects the pre-scanning and the main scanning. An improved writing efficiency is obtained by fully utilizing the effect of pre-writing to offer superior display characteristics without increasing the process load or the cost, and a liquid crystal display device. The polarity of a data signal is inverted for every horizontal scanning period. A pre-scanning period B is set five scanning periods to four scanning periods before the main scanning period A which is for writing a predetermined pixel voltage into the pixels. In the main scanning, the gate signal is raised simultaneously with the data signal and is broken down before the polarity of the data signal is inverted.
Abstract:
A thin film transistor substrate includes a transparent insulating substrate, a first thin film transistor that is formed on the transparent insulating substrate, and a second thin film transistor that is formed on the transparent insulating substrate. The second thin film transistor has a characteristic that differs from that of the first thin film transistor. An active layer of the first thin film transistor has a thickness greater than or equal to 50 nm, and an average crystal grain diameter greater than or equal to 1 nullm. An active layer of the second thin film transistor has a thickness less than or equal to 60 nm, and an average crystal grain diameter less than 1 nullm. The thin film transistor substrate is formed by conducting poly-crystallization through CW laser irradiation while controlling off time leak current generation and pressure resistance degradation.
Abstract:
The invention relates to a liquid crystal display utilizing a vertically aligned state of liquid crystal molecules when no voltage is applied and to a method of manufacturing the same. The invention is aimed at providing a liquid crystal display and a method of manufacturing the same in which the existing step for forming vertical alignment films can be omitted to achieve a cost reduction. The liquid crystal display includes a monofunctional monomer having a structure expressed by XnullR (where X represents an acrylate group or a methacrylate group, and R represents an organic group having a steroid skeleton). A liquid crystal material is sandwiched between substrates which is then irradiated with ultraviolet rays to cure the monofunctional monomer, thereby forming a polymer film at an interface of a substrate. The monofunctional monomer has a hydrophobic skeleton such as an alkyl chain and a photoreactive group on one side of the skeleton.
Abstract:
A dispenser has a syringe having a nozzle at one end thereof and a plunger fitted in the syringe from the other end of the syringe. One end of a pipe is connected to a portion of the syringe between the one end and the other end of the syringe. A liquid material tank is connected to the other end of the pipe. The liquid material tank is arranged so that a level of the liquid material in the liquid material tank is higher than in the syringe. The dispenser can be used for drip injection method for producing a liquid crystal display device to stably drip droplets of a liquid crystal onto a substrate of a liquid crystal display device.
Abstract:
A stagger type TFT substrate and a fabrication method therefor in which the number of exposure processes is reduced. A resist pattern is formed in an area on the TFT substrate where a drain bus-line (DB) is to be formed and an area on the TFT substrate where a TFT is to be formed by the use of a half tone mask. Etching is performed with this resist pattern as a mask to form the DB and a channel area for the TFT. In addition, a resist pattern is formed in an area where a gate bus-line (GB) is to be formed and an area where a pixel electrode is to be formed by the use of a half tone mask. Etching is performed with this resist pattern as a mask to form the GB and the pixel electrode. The DB and the channel are formed by one half tone mask and the GB and the pixel electrode are formed by another half tone mask. As a result, the number of exposure processes necessary for fabricating a stagger type TFT substrate can be reduced.
Abstract:
The invention relates to a liquid crystal display used in a display section of an electronic apparatus and a substrate for a liquid crystal display used in the same and provides a liquid crystal display and a substrate for a liquid crystal display used in the same which are manufactured with improved yield and which can achieve high display quality. A configuration includes a sealing material forming region which is provided in a peripheral portion of a glass substrate and in which a sealing material is formed and a cell gap control layer which is formed inside the sealing material forming region and which controls a cell gap.