Abstract:
A wireless power transmission system that transmits alternating-current power includes a power-transmitting device including first and second electrodes spaced apart and having a total width of λ/2π or less, i.e., a near field range, and a first inductor between the first and second electrodes and a AC power-generating section, and a power-receiving device including third and fourth electrodes spaced apart and having a total width of λ/2π or less, and a second inductor between the third and fourth electrodes and a load. A coupler including the first and second electrodes and the first inductor forms one resonant circuit and a coupler including the third and fourth electrodes and the second inductor forms another resonant circuit. Resonance frequencies of the couplers are substantially equal. The first and second electrodes and the third and fourth electrodes are spaced apart by λ/2π or less.
Abstract:
A biological information measuring device includes a light source that irradiates light, a sensor having a plurality of pixels arranged in an array in a two-dimensional plane and a saturation charge number of 1,000,000 or more. The sensor receives irradiated light transmitted, reflected, or scattered from the light source in a living body and outputs information according to the light intensity of the received light. A specific location selection unit selects a measurement target location of the measurement target for the biological information and a reference location different from the measurement target location, based on the information obtained by the image sensor. A biological information acquisition unit acquires biological information from the information obtained by the sensor at the measurement target location, using the information obtained by the sensor at the reference location as a reference.
Abstract:
A biological information measurement device includes: a scattering rate calculating unit configured to calculate a scattering rate of light at an interface between a medium present in a biological object or in a specimen and a particle included in the medium based on received-light intensity of light irradiated onto the biological object or onto the specimen and received via the biological object or via the specimen; and a concentration index calculating unit configured to calculate, based on a correlation between the scattering rate of the light at the interface and a concentration index corresponding to concentration of a target substance that is different from the particle included in the medium, the concentration index corresponding to the scattering rate of the light calculated by the scattering rate calculating unit.
Abstract:
A pressure sensor includes: a light source that outputs signal light; a sensor optical fiber where the signal light is input and the signal light is propagated with a loss of 0.3 dB/m or more; and an optical receiver that receives the signal light propagated through the sensor optical fiber. Further, pressure applied to the sensor optical fiber is detected on a basis of intensity of the signal light received by the optical receiver.
Abstract:
The insulation covered conductive wire includes a conductive wire, a non-adherent, laterally wound insulation member and a non-adherent braided insulation member. The non-adherent, laterally wound insulation member covers an outer circumference of the conductive wire without adhering thereto and is formed by laterally winding a plurality of first ceramic fibers constituted from a plurality of first ceramic strands in an extending direction of the conductive wire. The first ceramic strands are not in contact with each other and do not adhere to each other. The non-adherent braided insulation member covers an outer circumference of the non-adherent, laterally wound insulation member without adhering thereto and is formed by braiding a plurality of second ceramic fibers constituted from a plurality of second ceramic strands. The second ceramic fibers are not in contact with each other and do not adhere to each other.
Abstract:
An object detection device includes: an optical fiber at least partially including a sensor optical fiber configured to transmit light with a loss of 0.3 dB/m or more; and a light receiving unit configured to receive, from the optical fiber, the light received by the sensor optical fiber, wherein the object detection device is configured to detect an object based on an intensity of the light received by the light receiving unit.
Abstract:
An in vivo pressure measurement device includes: a light source configured to output test light; an optical fiber, to which the test light is input, at least partially including a sensor optical fiber configured to transmit the test light with a loss of 0.3 dB/m or more; and a light receiving unit configured to receive the test light transmitted through the sensor optical fiber. The in vivo pressure measurement device is configured to measure pressure in a living body acting on the sensor optical fiber based on intensity of the test light received at the light receiving unit.