摘要:
The present invention is directed to a method for identifying and/or cloning within a biological sample alternatively spliced nucleic acid regions ocurring between two physiological conditions, comprising hybridizing RNA derived from a test condition with cDNA derived from the standard condition and further identifying and/or cloning nucleic acids corresponding to alternative forms of splicing.
摘要:
This application concerns methods and compositions that can be used for detecting the Alzheimer disease in mammals, particularly in humans. It describes in particular serum markers for Alzheimer's disease and the way they are used for diagnostic procedures. It also concerns tools and/or kits that can be used for applying these procedures (reagents, probes, primers, antibodies, chips, cells, etc.) with the preparation thereof and the way to use them. The invention can be used to detect the presence or the progression of Alzheimer illness in mammals, including at early stages of the disease.
摘要:
The invention concerns a method for identifying and/or cloning nucleic acid regions representing qualitative differences associated with alternative splicing events and/or with insertions, deletions located in RNA transcribed genome regions, between two physiological situations, comprising either hybridization of RNA derived from the test situation with cDNA's derived from the reference situation and/or reciprocally, or double-strand hybridization of cDNA derived from the test situation with cDNA's derived from the reference situation; and identifying and/or cloning nucleic acids representing qualitative differences. The invention also concerns compositions or banks of nucleic acids representing qualitative differences between two physiological situations, obtainable by the above method, and their use as probe, for identifying genes or molecules of interest, or still for example in methods of pharmacogenomics, and profiling of molecules relative to their therapeutic and/or toxic effects. The invention further concerns the use of dysregulation of splicing RNA as markers for predicting molecule toxicity and/or efficacy, and as markers in pharmacogenomics.
摘要:
The invention concerns a method for identifying and/or cloning nucleic acid regions representing qualitative differences associated with alternative splicing events and/or with insertions, deletions located in RNA transcribed genome regions, between two physiological situations, comprising either hybridization of RNA derived from the test situation with cDNA's derived from the reference situation and/or reciprocally, or double-strand hybridization of cDNA derived from the test situation with cDNA's derived from the reference situation; and identifying and/or cloning nucleic acids representing qualitative differences. The invention also concerns compositions or banks of nucleic acids representing qualitative differences between two physiological situations, obtainable by the above method, and their use as probe, for identifying genes or molecules of interest, or still for example in methods of pharmacogenomics, and profiling of molecules relative to their therapeutic and/or toxic effects. The invention further concerns the use of dysregulation of splicing RNA as markers for predicting molecule toxicity and/or efficacy, and as markers in pharmacogenomics.
摘要:
The invention concerns a method for identifying and/or cloning nucleic acid regions representing qualitative differences associated with alternative splicing events and/or with insertions, deletions located in RNA transcribed genome regions, between two physiological situations, comprising either hybridization of RNA derived from the test situation with cDNA's derived from the reference situation and/or reciprocally, or double-strand hybridization of cDNA derived from the test situation with cDNA's derived from the reference situation; and identifying and/or cloning nucleic acids representing qualitative differences. The invention also concerns compositions or banks of nucleic acids representing qualitative differences between two physiological situations, obtainable by the above method, and their use as probe, for identifying genes or molecules of interest, or still for example in methods of pharmacogenomics, and profiling of molecules relative to their therapeutic and/or toxic effects. The invention further concerns the use of dysregulation of splicing RNA as markers for predicting molecule toxicity and/or efficacy, and as markers in pharmacogenomics.
摘要:
The present application concerns methods and compositions which can be used to detect cancer in mammals, in particular in humans. It notably describes serum markers of cancers and their uses in diagnosis methods. It also concerns tools and/or kits which can be used to implement these methods (reagents, probes, primers, antibodies, chips, cells, etc.), their preparation and their uses. The invention can be used to detect the presence or the progression of a cancer, particularly breast cancer, including at an early stage.
摘要:
The invention concerns a method for identifying and/or cloning nucleic acid regions representing qualitative differences associated with alternative splicing events and/or with insertions, deletions located in RNA transcribed genome regions, between two physiological situations, comprising either hybridization of RNA derived from the test situation with cDNA's derived from the reference situation and/or reciprocally, or double-strand hybridization of cDNA derived from the test situation with cDNA's derived from the reference situation; and identifying and/or cloning nucleic acids representing qualitative differences. The invention also concerns compositions or banks of nucleic acids representing qualitative differences between two physiological situations, obtainable by the above method, and their use as probe, for identifying genes or molecules of interest, or still for example in methods of pharmacogenomics, and profiling of molecules relative to their therapeutic and/or toxic effects. The invention further concerns the use of dysregulation of splicing RNA as markers for predicting molecule toxicity and/or efficacy, and as markers in pharmacogenomics.
摘要:
The present invention concerns new compositions and methods for the detection of pathological events. It more specifically concerns methods for the detection in vitro of the presence of a pathology or a pathological event in a subject, comprising taking a sample of blood cells from the subject and determining, in this sample, the presence of blood cells presenting a physiological state characteristic of the pathology. The invention also concerns the tools, kits and compositions for the implementation of such methods, as well as their uses in the field of human and animal health, or in experimental research for example.
摘要:
The present invention concerns new compositions and methods for the detection of pathological events. It more specifically concerns methods for the detection in vitro of the presence of a pathology or a pathological event in a subject, comprising taking a sample of blood cells from the subject and determining, in this sample, the presence of blood cells presenting a physiological state characteristic of the pathology. The invention also concerns the tools, kits and compositions for the implementation of such methods, as well as their uses in the field of human and animal health, or in experimental research for example.
摘要:
The present invention describes new methods for the determination of the potential toxicity of test compounds, as well as the kits and tools for the implementation of these methods. The invention also describes methods for generating nucleic acid sequences that can be used as genetic markers of toxicity. The invention is based in particular on the creation of differential nucleic acid banks characteristic of situations in which cell viability and/or proliferation are deregulated, and on the demonstration that these banks can be used to evaluate the toxicity profile of compounds with reliability and high sensitivity. The invention is of special utility in the pharmaceutical industry for analysis of the toxicity profile of compounds involved in drug development and/or in pharmaceutical compositions.