摘要:
A new method of forming MOS transistors in the manufacture of an integrated circuit device has been achieved. A semiconductor substrate is provided. A pad oxide layer is deposited. A silicon nitride layer is deposited. Trenches are patterned for planned shallow trench isolations. The sidewalls of the trenches are oxidized. A photoresist layer is deposited overlying the silicon nitride layer and filling the trenches. The photoresist layer is etched down to below the top surface of the silicon nitride layer. The silicon nitride layer is patterned to form dummy gate electrodes. Sidewall spacers are formed on the dummy gate electrodes. The photoresist layer is removed. A dielectric layer is deposited overlying the dummy gate electrodes and the trenches. The dielectric layer is polished down to the top surface of the dummy gate electrodes to thereby complete the STI and the ILD. The dummy gate electrodes are etched away. A gate oxide layer is formed. A gate electrode layer is deposited overlying the dielectric layer and filling the openings for the planned transistor gates. The gate electrode layer is polished down to form the transistor gates, and the integrated circuit is completed.
摘要:
A new method of forming MOS transistors has been achieved. A pad oxide layer is grown. A silicon nitride layer is deposited. Trenches are etched for planned STI. A trench liner is grown inside of the trenches. A trench oxide layer is deposited filling the trenches. The trench oxide layer is polished down to complete the STI. The same silicon nitride layer is patterned to form dummy gates. A gate liner layer is deposited. Ions are implanted to form lightly doped drain junctions. Sidewall spacers are formed adjacent to the dummy gate electrodes and the shallow trench isolations. Ions are implanted to form the drain and source junctions. An epitaxial silicon layer is grown overlying the source and drain junctions. A metal layer is deposited. The epitaxial silicon layer is converted into sulicide to form silicided source and drain contacts. An interlevel dielectric layer is deposited and polished down to the dummy gates. The dummy gates are etched away to form openings for the planned transistor gates. A gate oxide layer is deposited lining the transistor gate openings. A gate electrode layer is deposited to fill the transistor gate openings. The gate electrode layer is patterned to complete the transistor gates.
摘要:
A new method of fabricating shallow trench isolations has been achieved. No final polishing down process is needed. A silicon substrate is provided. A pad oxide layer is formed overlying the silicon substrate. A silicon nitride layer is deposited overlying the pad oxide layer. The silicon nitride layer, the pad oxide layer, and the silicon substrate are patterned to form trenches for planned shallow trench isolations. A liner oxide layer is grown overlying the semiconductor substrate is the trenches. A silicon dioxide spacer layer is deposited overlying the silicon nitride layer and the liner oxide layer to partially fill the trenches. The silicon dioxide spacer layer and the liner oxide layer are anisotropically etched to form sidewall spacers inside the trenches and to expose the bottom of said trenches. A silicon layer is selectively grown overlying the semiconductor substrate in the trenches. The silicon layer partially fills the trenches. A trench oxide layer is formed overlying the silicon layer. The silicon nitride layer is removed. The pad oxide layer is removed to complete the shallow trench isolation, and the integrated circuit device is completed.
摘要:
A method for planarizing metal plugs for device interconnections. The process begins by providing a semiconductor structure with at least one device thereon. A dielectric layer is formed over the device and the semiconductor structure. A first barrier metal layer is formed on the dielectric layer, and a sacrificial oxide layer is formed on the first barrier metal layer. The sacrificial oxide layer, the first barrier metal layer, and the dielectric layer are patterned to form contact openings. A second barrier metal layer is formed over the semiconductor structure, and a metal contact layer is formed on the second barrier metal layer. The metal contact layer and the second barrier metal layer are planarized using a first chemical mechanical polishing process and the sacrificial oxide layer is removed. The metal contact layer and the first barrier metal layer are planarized using a second chemical mechanical polishing process.
摘要:
A method of manufacturing a shallow trench isolation using a polishing step with reduced dishing. A pad layer, a polish stop layer, a buffer layer and a hard mask layer are formed over a substrate. The hard mask layer has a hard mask opening. We etch a trench opening in the buffer layer, the polish stop layer, the pad layer and form a trench in the substrate using the hard mask layer as an etch mask. We form an oxide trench liner layer along the sidewalls of the trench and an oxide buffer liner layer on the sidewalls of the buffer layer using a thermal oxidation. The hard mask layer prevents the oxidation of the top surface of the buffer layer during the oxidation of the oxide trench liner. This prevents the buffer layer from being consumed by the oxidation and leaves the buffer layer to act in the subsequent chemical-mechanical polish (CMP) step. Next, an insulating layer is formed at least partially filling the trench. The insulating layer is chemical-mechanical polished using the polish stop layer as a stop layer. The buffer layer acts to prevent field oxide dishing during the chemical-mechanical polish.
摘要:
FIG. 1 is a front, top perspective view of a switch portable dock showing my new design. FIG. 2 is a front view thereof; FIG. 3 is a rear view thereof; FIG. 4 is a left side view thereof; FIG. 5 is a right side view thereof; FIG. 6 is a top view thereof; FIG. 7 is a bottom view thereof; FIG. 8 is a rear, bottom perspective view; and, FIG. 9 is a front perspective view thereof, showing the switch portable dock in an open state of use. The broken lines in the drawings depict portions of the switch portable dock that form no part of the claimed design.
摘要:
An example device includes a U-shaped body to be placed around a guide on which a scanner carriage is to be guided. A fixed leg of the U-shaped body is attached to a linearly translatable scanner carriage. A free leg of the U-shaped body is not attached to the scanner carriage and has inward facing ribs. The ribs on the free leg of the U-shaped body are positioned to come into contact with the guide to align the scanner carriage with the guide.
摘要:
Methods and systems are provided for improved data packet transmission in a network bridge. Separate data packets received from a plurality of automation components are aggregated into a single data packet stream. The data packet stream is transmitted to another network node, for example, another network bridge.
摘要:
The present invention provides a clock and data recovery circuit, including an n-phase clock, a sampling and edge detection unit, an edge determination unit, a clock picking unit and a data picking unit. The sampling and edge detection unit performs spaced sampling on the input serial data using the n-phase clock, and performs edge detection and resampling on the sampled data. The edge determination unit filters the resampled data by the counting units, and obtains the positions of the edges of the serial data according to the counting result of the counting units. The clock picking unit selects a clock from the n clocks that is the farthest away from the edges as the recovered clock. The data picking unit obtains the recovered data according to the recovered clock. The present invention also provides a parallel output circuit.
摘要:
Storage class memory may be used in an architecture to achieve high performance, high reliability, high compatibility. In some embodiments, reads may be handled in a conventional way used in a memory based model. However writes do not use a memory based model but instead correspond to a storage based model. The hybrid nature can be achieved by setting the storage class memory to be write protected so that all writes must go through a software based block device interface. In some embodiments, the software based block device interface prevents erroneous writes to the storage class memory.