Abstract:
A method of processing a semiconductor assembly is presented. The method includes fabricating a photovoltaic module including a semiconductor assembly. The fabrication step includes performing an efficiency enhancement treatment on the semiconductor assembly, wherein the efficiency enhancement treatment includes light soaking the semiconductor assembly, and heating the semiconductor assembly. The semiconductor assembly includes a window layer having an average thickness less than about 80 nanometers, wherein the window layer includes cadmium and sulfur. A related system is also presented.
Abstract:
Thin film photovoltaic devices are provided that include a transparent substrate defining an inner surface and an outer surface; a thin film stack on the inner surface of the transparent substrate; an encapsulation substrate on the thin film stack; and a color reflection film on the outer surface of the transparent substrate. The thin film stack has a photovoltaic heterojunction (e.g., formed from a n-type window thin film layer and an absorber thin film layer). Generally, the color reflection film comprises a colorant, such as a refractive material (e.g., a nitride material, an oxide material, or mixtures thereof). Methods are also provided for forming such a photovoltaic device, and for forming an array of photovoltaic devices to define an image.
Abstract:
A method of processing a semiconductor assembly is presented. The method includes fabricating a photovoltaic module including a semiconductor assembly. The fabrication step includes performing an efficiency enhancement treatment on the semiconductor assembly, wherein the efficiency enhancement treatment includes light soaking the semiconductor assembly, and heating the semiconductor assembly. The semiconductor assembly includes a window layer having an average thickness less than about 80 nanometers, wherein the window layer includes cadmium and sulfur. A related system is also presented.