摘要:
A stressed film applied across a boundary defined by a structure or a body (e.g. substrate or layer) of semiconductor material provides a change from tensile to compressive stress in the semiconductor material proximate to the boundary and is used to modify boron diffusion rate during annealing and thus modify final boron concentrations. In the case of a field effect transistor, the gate structure may be formed with or without sidewalls to regulate the location of the boundary relative to source/drain, extension and/or halo implants. Different boron diffusion rates can be produced in the lateral and vertical directions and diffusion rates comparable to arsenic can be achieved. Reduction of junction capacitance of both nFETs and pFETs can be achieved simultaneously with the same process steps.
摘要:
A stressed film applied across a boundary defined by a structure or a body (e.g. substrate or layer) of semiconductor material provides a change from tensile to compressive stress in the semiconductor material proximate to the boundary and is used to modify boron diffusion rate during annealing and thus modify final boron concentrations. In the case of a field effect transistor, the gate structure may be formed with or without sidewalls to regulate the location of the boundary relative to source/drain, extension and/or halo implants. Different boron diffusion rates can be produced in the lateral and vertical directions and diffusion rates comparable to arsenic can be achieved. Reduction of junction capacitance of both nFETs and pFETs can be achieved simultaneously with the same process steps.
摘要:
A method is provided in which an n-type field effect transistor (NFET) and a p-type field effect transistor (PFET) each have a channel region disposed in a first single-crystal semiconductor region having a first composition. A stress is applied at a first magnitude to a channel region of the PFET but not at that magnitude to the channel region of the NFET. The stress is applied by a single-crystal semiconductor layer having a second composition such that the single-crystal semiconductor layer is lattice-mismatched to the first region. The semiconductor layer is formed over the source and drain regions and optionally over the extension regions of the PFET at a first distance from the channel region of the PFET and is formed over the source and drain regions of the NFET at a second, greater distance from the channel region of the NFET, or the semiconductor layer having the second composition is not formed at all in the NFET.
摘要:
A structure and method are provided in which an n-type field effect transistor (NFET) and a p-type field effect transistor (PFET) each have a channel region disposed in a single-crystal layer of a first semiconductor and a stress is applied at a first magnitude to a channel region of the PFET but not at that magnitude to the channel region of the NFET. The stress is applied by a layer of a second semiconductor which is lattice-mismatched to the first semiconductor. The layer of second semiconductor is formed over the source and drain regions and extensions of the PFET at a first distance from the channel region of the PFET and is formed over the source and drain regions of the NFET at a second, greater distance from the channel region of the NFET, or not formed at all in the NFET.
摘要:
The present invention provides a semiconductor device having dual nitride liners, which provide an increased transverse stress state for at least one FET and methods for the manufacture of such a device. A first aspect of the invention provides a method for use in the manufacture of a semiconductor device comprising the steps of applying a first silicon nitride liner to the device and applying a second silicon nitride liner adjacent the first silicon nitride liner, wherein at least one of the first and second silicon nitride liners induces a transverse stress in a silicon channel beneath at least one of the first and second silicon nitride liner.
摘要:
The present invention provides a semiconductor device having dual nitride liners, which provide an increased transverse stress state for at least one FET and methods for the manufacture of such a device. A first aspect of the invention provides a method for use in the manufacture of a semiconductor device comprising the steps of applying a first silicon nitride liner to the device and applying a second silicon nitride liner adjacent the first silicon nitride liner, wherein at least one of the first and second silicon nitride liners induces a transverse stress in a silicon channel beneath at least one of the first and second silicon nitride liner.
摘要:
The present invention provides a semiconductor device having dual nitride liners, which provide an increased transverse stress state for at least one FET and methods for the manufacture of such a device. A first aspect of the invention provides a method for use in the manufacture of a semiconductor device comprising the steps of applying a first silicon nitride liner to the device and applying a second silicon nitride liner adjacent the first silicon nitride liner, wherein at least one of the first and second silicon nitride liners induces a transverse stress in a silicon channel beneath at least one of the first and second silicon nitride liner.
摘要:
A process is provided for making a PFET and an NFET. Areas in a first semiconductor region adjacent to a gate stack are recessed. A lattice-mismatched semiconductor layer is grown in the recesses to apply a strain to the channel region of the PFET adjacent thereto. A layer of the first semiconductor material can be grown over the lattice-mismatched semiconductor layer and a salicide formed from the layer of silicon to provide low-resistance source and drain regions.
摘要:
A method and structure for producing CMOS devices having thin gates with enhanced stress in a stressed channel is provided. The method allows for producing a CMOS device with a relatively thin gate to provide improved gate response characteristics. Additionally, the structure includes a first stressed film having a raised portion which extends above a top surface of the thin gate. By providing a raised portion of the first stressed film extending about a top surface of the gate, a relatively thick layer of the first stressed film as compared to the thickness of the thin gate is included in the CMOS device and thus allows for higher stress levels in the stressed channel. Additionally, a second stressed film having a stress direction opposite to that of the first stressed film may be included above the thin gate to further enhance the stress in the stressed channel of the CMOS device.
摘要:
A p-type field effect transistor (PFET) and an n-type field effect transistor (NFET) of an integrated circuit are provided. A first strain is applied to the channel region of the PFET but not the NFET via a lattice-mismatched semiconductor layer such as silicon germanium disposed in source and drain regions of only the PFET and not of the NFET. A process of making the PFET and NFET is provided. Trenches are etched in the areas to become the source and drain regions of the PFET and a lattice-mismatched silicon germanium layer is grown epitaxially therein to apply a strain to the channel region of the PFET adjacent thereto. A layer of silicon can be grown over the silicon germanium layer and a salicide formed from the layer of silicon to provide low-resistance source and drain regions.