Abstract:
Apparatus are provided for amplifier systems and related integrated circuits are provided. An exemplary integrated circuit includes a main amplifier arrangement, first impedance matching circuitry coupled between the output of the main amplifier arrangement and a first output of the integrated circuit, a peaking amplifier arrangement, and second impedance matching circuitry coupled between the output of the peaking amplifier arrangement and a second output of the integrated circuit. In one exemplary embodiment, the first impedance matching circuitry and the second impedance matching circuitry have different circuit topologies and different physical topologies.
Abstract:
An embodiment of an amplifier includes N (N>1) switch-mode power amplifier (SMPA) branches. Each SMPA branch includes two drive signal inputs and one SMPA branch output. A module coupled to the amplifier samples an input RF signal, and produces combinations of drive signals based on the samples. When an SMPA branch receives a first combination of drive signals, it produces an output signal at one voltage level. Conversely, when the SMPA branch receives a different second combination of drive signals, it produces the output signal at another voltage level. At least two of the SMPA branches produce output signals having different absolute magnitudes. A combiner combines the output signals from all of the SMPA branches to produce a combined output signal that may have, at any given time, one of 2*N+1 quantization states.
Abstract:
Apparatus are provided for amplifier systems and related circuits are provided. An exemplary circuit includes a main amplifier arrangement, first impedance matching circuitry coupled between the output of the main amplifier arrangement and a first output of the circuit, a peaking amplifier arrangement, and second impedance matching circuitry coupled between the output of the peaking amplifier arrangement and a second output of the circuit. In one exemplary embodiment, the first impedance matching circuitry and the second impedance matching circuitry have different circuit topologies and different physical topologies.
Abstract:
An embodiment of an amplifier includes N (N>1) switch-mode power amplifier (SMPA) branches. Each SMPA branch includes two drive signal inputs and one SMPA branch output. A module coupled to the amplifier samples an input RF signal, and produces combinations of drive signals based on the samples. When an SMPA branch receives a first combination of drive signals, it produces an output signal at a first voltage level. Conversely, when the SMPA branch receives a different second combination of drive signals, it produces the output signal at a different second voltage level. Finally, when the SMPA branch receives a different third combination of drive signals, it produces the output signal at a voltage level of substantially zero. A combiner combines the output signals from all of the SMPA branches to produce a combined output signal that may have, at any given time, one of 2*N+1 quantization states.
Abstract:
Apparatus are provided for amplifier systems and related circuits are provided. An exemplary circuit includes a main amplifier arrangement, first impedance matching circuitry coupled between the output of the main amplifier arrangement and a first output of the circuit, a peaking amplifier arrangement, and second impedance matching circuitry coupled between the output of the peaking amplifier arrangement and a second output of the circuit. In one exemplary embodiment, the first impedance matching circuitry and the second impedance matching circuitry have different circuit topologies and different physical topologies.