摘要:
A process time estimating apparatus is disclosed for estimating the process time for manufacturing an object such as a metal die. The apparatus includes a process time estimating section, a process occupancy time measurement section and a process program scheduling section. The process time estimating section includes a neural network device as an estimating device. An estimation input factor extracting section extracts input factors such as drawing information for an object to be manufactured. A storing section stores input factors for later neural network learning to improve the estimation capability of the system. The process occupancy time measurement section reads the process code and automatically measures the actual time involved in performing the process for a particular object being manufactured. A selecting section selects a measured process time for neural network learning. The process program scheduling section receives output information from the time measurement section and stores time estimates which are compared with actual process times for selecting a measured process time for further neural network learning.
摘要:
To obtain a conductive metal film having superior step coverage, adhesiveness, and high productivity. A conductive metal film or metal oxidized film suitable as a capacitor electrode is formed on a substrate by performing an excited-gas supplying step after a source gas supplying step. In the source gas supplying step, gas obtained by vaporizing an organic source is supplied to the substrate, and the gas thus supplied is allowed to be adsorbed on the substrate. In the excited-gas supplying step, oxygen or nitrogen containing gas excited by plasma is supplied to the substrate to decompose the source adsorbed on the substrate, thus forming a film. An initial film-forming stop is a step of forming the film by repeating the source gas supplying step and the excited-gas supplying step once or multiple times. A desired thickness can be obtained by one step of the initial film-forming step. However, thereafter, in addition to the initial film-forming step, the film-forming step may be two steps by performing the main film-forming step of simultaneously supplying the gas obtained by vaporizing the organic source and oxygen containing gas or nitrogen containing gas not excited by plasma by using a thermal CVD method.
摘要:
Disclosed is a producing method of a semiconductor device, including: loading at least one substrate formed on a surface thereof with a tungsten film into a processing chamber; and forming a silicon oxide film on the surface of the substrate which includes the tungsten film by alternately repeating following steps a plurality of times: supplying the processing chamber with a first reaction material including a silicon atom while heating the substrate at 400° C.; and supplying the processing chamber with hydrogen and water which is a second reaction material while heating the substrate at 400° C. at a ratio of the water with respect to the hydrogen of 2×10−1 or lower.
摘要:
To provide a manufacturing method of a semiconductor device and a substrate processing apparatus capable of easily controlling a nitrogen concentration distribution in a film containing a metal atom and a silicon atom, and manufacturing a high quality semiconductor device. The method comprises a step of forming a film containing the metal atom and the silicon atom on a substrate 30 in a reaction chamber 4, and performing a nitriding process for the film, wherein the film is formed by changing a silicon concentration at least in two stages in the step of forming a film.
摘要:
To obtain a conductive metal film having superior step coverage, adhesiveness, and high productivity. A conductive metal film or metal oxidized film suitable as a capacitor electrode is formed on a substrate by performing an excited-gas supplying step after a source gas supplying step. In the source gas supplying step, gas obtained by vaporizing an organic source is supplied to the substrate, and the gas thus supplied is allowed to be adsorbed on the substrate. In the excited-gas supplying step, oxygen or nitrogen containing gas excited by plasma is supplied to the substrate to decompose the source adsorbed on the substrate, thus forming a film. An initial film-forming stop is a step of forming the film by repeating the source gas supplying step and the excited-gas supplying step once or multiple times. A desired thickness can be obtained by one step of the initial film-forming step. However, thereafter, in addition to the initial film-forming step, the film-forming step may be two steps by performing the main film-forming step of simultaneously supplying the gas obtained by vaporizing the organic source and oxygen containing gas or nitrogen containing gas not excited by plasma by using a thermal CVD method.
摘要:
Disclosed is a producing method of a semiconductor device, including: loading at least one substrate formed on a surface thereof with a tungsten film into a processing chamber; and forming a silicon oxide film on the surface of the substrate which includes the tungsten film by alternately repeating following steps a plurality of times: supplying the processing chamber with a first reaction material including a silicon atom while heating the substrate at 400° C.; and supplying the processing chamber with hydrogen and water which is a second reaction material while heating the substrate at 400° C. at a ratio of the water with respect to the hydrogen of 2×10−1 or lower.
摘要:
To provide a manufacturing method of a semiconductor device and a substrate processing apparatus capable of easily controlling a nitrogen concentration distribution in a film containing a metal atom and a silicon atom, and manufacturing a high quality semiconductor device.The method comprises a step of forming a film containing the metal atom and the silicon atom on a substrate 30 in a reaction chamber 4, and performing a nitriding process for the film, wherein the film is formed by changing a silicon concentration at least in two stages in the step of forming a film.
摘要:
A mold and die metallic material, an air-permeable member for mold and die use, and a method for making the same are provided. The mold and die metallic material is made by forming a mixed material containing stainless steel fibers with an equivalent diameter of 30-300 μm and a length of 0.4-5.0 mm, and stainless steel powder, heat sintering a green body of the mixed material, and heating the sintered body thus obtained in a nitrogen atmosphere and nitrided; wherein average open pore diameter thereof is 3-50 μm.
摘要:
A mold and die metallic material, an air-permeable member for mold and die use, and a method for making the same are provided. The mold and die metallic material is made by forming a mixed material containing stainless steel fibers with an equivalent diameter of 30-300 μm and a length of 0.4-5.0 mm, and stainless steel powder, heat sintering a green body of the mixed material, and heating the sintered body thus obtained in a nitrogen atmosphere and nitrided; wherein average open pore diameter thereof is 3-50 μm.
摘要:
There are provided a method of manufacturing a semiconductor device and a substrate processing apparatus by which the quality of a silicon nitride film can be improved. The method comprises: (a) supplying a silicon-containing gas into a process chamber accommodating a substrate in a heated state; (b) switching between an exhaust stop state and an exhaust operation state at least two times while a nitrogen-containing gas is supplied into the process chamber so as to vary an inside pressure of the process chamber such that a maximum inside pressure of the process chamber is at least twenty times higher than a minimum inside pressure of the process chamber. The steps (a) and (b) are alternately repeated to form a silicon nitride film on the substrate.