Abstract:
The disclosure relates to technology for communicating data and control information on an uplink channel in a wireless communication system. A frame is constructed to communicate symbols between a base station and user equipment, and zones are configured for an uplink channel in an uplink subframe using a signaling message. A first zone in the uplink channel is configured as a physical uplink control channel (PUCCH) for transmission of control information and a second zone is configured as a physical uplink shared channel (PUSCH) for transmission of data information. The PUCCH zone configuration is transmitted to the user equipment by the base station, control information is received by the base station as uplink control information (UCI) on the PUCCH resource using a single carrier modulation, such as SC-FDMA, and the data is received at the base station on the PUSCH resource using a multicarrier modulation, such as OFDM.
Abstract:
The disclosure relates to technology for communicating data and control information on an uplink channel in a wireless communication system. A frame is constructed to communicate symbols between a base station and user equipment, and zones are configured for an uplink channel in an uplink subframe using a signaling message. A first zone in the uplink channel is configured as a physical uplink control channel (PUCCH) for transmission of control information and a second zone is configured as a physical uplink shared channel (PUSCH) for transmission of data information. The PUCCH zone configuration is transmitted to the user equipment by the base station, control information is received by the base station as uplink control information (UCI) on the PUCCH resource using a single carrier modulation, such as SC-FDMA, and the data is received at the base station on the PUSCH resource using a multicarrier modulation, such as OFDM.
Abstract:
Embodiments are provided to implement a time/power/frequency hopping scheme for device-to-device (D2D) discovery. The embodiments improve the UE detection of D2D discovery signals from neighboring UEs and account for large number of UEs' discovery signals. This is achieved by having neighboring UEs transmitting at different time instances and at different power levels. Further, neighboring UEs can be configured to transmit on different frequencies. This is achieved by assigning different time/power/frequency sequences to different UEs. An embodiment method includes transmitting, to a UE, parameters a hopping pattern of a first sequence of resources for transmitting a discovery signal by the UE and of a second sequence of resources for receiving a second discovery signal by the UE. The first sequence of resources comprises at least one of a sequence of time instances and a sequence of power levels. The second sequence of resources comprises time instances.
Abstract:
The disclosure relates to technology for a base station to signal user equipment to monitor a narrowband control channel in a wideband system. The base station sends a configuration signaling to configure the user equipment including a designation of subframe(s). The base station then determines whether to signal the user equipment to monitor the subframe(s) using one of a narrowband bandwidth and a system bandwidth. In response to the base station signaling the user equipment to monitor the narrowband bandwidth, the base station communicates with the user equipment using the narrowband bandwidth. In response to the base station signaling the user equipment to monitor the system bandwidth, the base station sends a probe message within the narrowband bandwidth to the user equipment, where the probe message signals to the user equipment to begin monitoring the system bandwidth and to communicate with the user equipment using the system bandwidth.
Abstract:
Embodiments are provided to implement a time/power/frequency hopping scheme for device-to-device (D2D) discovery. The embodiments improve the UE detection of D2D discovery signals from neighboring UEs and account for large number of UEs' discovery signals. This is achieved by having neighboring UEs transmitting at different time instances and at different power levels. Further, neighboring UEs can be configured to transmit on different frequencies. This is achieved by assigning different time/power/frequency sequences to different UEs. An embodiment method includes transmitting, to a UE, parameters a hopping pattern of a first sequence of resources for transmitting a discovery signal by the UE and of a second sequence of resources for receiving a second discovery signal by the UE. The first sequence of resources comprises at least one of a sequence of time instances and a sequence of power levels. The second sequence of resources comprises time instances.
Abstract:
The disclosure relates to technology for a base station to signal user equipment to monitor a narrowband control channel in a wideband system. The base station sends a configuration signaling to configure the user equipment including a designation of subframe(s). The base station then determines whether to signal the user equipment to monitor the subframe(s) using one of a narrowband bandwidth and a system bandwidth. In response to the base station signaling the user equipment to monitor the narrowband bandwidth, the base station communicates with the user equipment using the narrowband bandwidth. In response to the base station signaling the user equipment to monitor the system bandwidth, the base station sends a probe message within the narrowband bandwidth to the user equipment, where the probe message signals to the user equipment to begin monitoring the system bandwidth and to communicate with the user equipment using the system bandwidth.