Abstract:
A system and method for separating a vehicle system into separate vehicle segments, separately moving the vehicle segments, and re-connecting the vehicle segments without initiation of a brake penalty application are provided. The system and method communicate a suspend command signal between vehicle segments to suspend operations of vehicles in a cooperative mode. The vehicles in the vehicle system are decoupled into plural separate vehicle segments. The system and method also move one or more of the vehicle segments separately from one or more other vehicle segments. The vehicle segments are reconnected to form the vehicle system, and the system and method communicate a reconnect command signal between the vehicle segments to resume operations in the cooperative mode, without incurring a penalty brake application of the vehicle system.
Abstract:
A system and method for separating a vehicle system into separate vehicle segments, separately moving the vehicle segments, and re-connecting the vehicle segments without initiation of a brake penalty application are provided. The system and method communicate a suspend command signal between vehicle segments to suspend operations of vehicles in a cooperative mode. The vehicles in the vehicle system are decoupled into plural separate vehicle segments. The system and method also move one or more of the vehicle segments separately from one or more other vehicle segments. The vehicle segments are reconnected to form the vehicle system, and the system and method communicate a reconnect command signal between the vehicle segments to resume operations in the cooperative mode, without incurring a penalty brake application of the vehicle system.
Abstract:
A method for controllably linking propulsion units in a vehicle consist includes transmitting a linking signal having an identity of a lead propulsion unit. A remote propulsion unit is remotely controlled by the lead unit when the identity matches a designated identity stored onboard the remote unit. A de-linking signal is transmitted from the lead unit when the lead unit is to be decoupled from the vehicle consist. The de-linking signal includes a replacement identity of a replacement propulsion unit. A replacement linking signal is transmitted from a second lead unit. The remote propulsion unit allows the second lead propulsion unit to remotely control the operations of the remote propulsion unit when replacement identity stored onboard the remote propulsion unit matches an identity that is communicated in the replacement linking signal.
Abstract:
A method for determining a slack condition of a vehicle system includes determining when each of first and second vehicles reaches a designated location along a route. The method also includes communicating a response message from the second vehicle to the first vehicle responsive to the second vehicle reaching the designated location, calculating a separation distance between the first vehicle and the second vehicle based on a time delay between a first time when the first vehicle reached the designated location and a second time when the second vehicle reached the designated location, and determining a slack condition of the vehicle system based on the separation distance. The slack condition is representative of an amount of slack in the vehicle system between the first and second vehicles.
Abstract:
A communication system and method for communicatively linking vehicles in a vehicle consist determine a vehicle identifier for a first remote vehicle included in a vehicle consist formed from a lead vehicle and at least the first remote vehicle. The system and method communicate a wireless linking message addressed to the vehicle identifier from the lead vehicle to the first remote vehicle, and establish a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The communication link is established such that movement of the first remote vehicle is remotely controlled from the lead vehicle via the communication link. The communication link is established without an operator entering the first remote vehicle.
Abstract:
A communication system and method for communicatively linking vehicles in a vehicle consist determine a vehicle identifier for a first remote vehicle included in a vehicle consist formed from a lead vehicle and at least the first remote vehicle. The system and method communicate a wireless linking message addressed to the vehicle identifier from the lead vehicle to the first remote vehicle, and establish a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The communication link is established such that movement of the first remote vehicle is remotely controlled from the lead vehicle via the communication link. The communication link is established without an operator entering the first remote vehicle.
Abstract:
A method for controllably linking propulsion units in a vehicle consist includes transmitting a linking signal having an identity of a lead propulsion unit. A remote propulsion unit is remotely controlled by the lead unit when the identity matches a designated identity stored onboard the remote unit. A de-linking signal is transmitted from the lead unit when the lead unit is to be decoupled from the vehicle consist. The de-linking signal includes a replacement identity of a replacement propulsion unit. A replacement linking signal is transmitted from a second lead unit. The remote propulsion unit allows the second lead propulsion unit to remotely control the operations of the remote propulsion unit when replacement identity stored onboard the remote propulsion unit matches an identity that is communicated in the replacement linking signal.
Abstract:
A system and method for controlling a vehicle system control movement of the vehicle system along a route. The vehicle system includes one or more propulsion-generating vehicles. A propulsion-generating helper vehicle is temporarily added to the vehicle system such that the helper vehicle increases one or more of an amount of tractive force or an amount of braking effort generated by the vehicle system. The helper vehicle may be added during movement of the vehicle system. The system and method may add the helper vehicle without de-linking the propulsion-generating vehicles in the vehicle system from each other. The system and method optionally may control movement of the propulsion-generating vehicles and the helper vehicle according to a trip plan that designates operational settings as a function of at least one of time or distance along the route.
Abstract:
A method for controllably linking propulsion units in a vehicle consist includes transmitting a linking signal having an identity of a lead propulsion unit. A remote propulsion unit is remotely controlled by the lead unit when the identity matches a designated identity stored onboard the remote unit. A de-linking signal is transmitted from the lead unit when the lead unit is to be decoupled from the vehicle consist. The de-linking signal includes a replacement identity of a replacement propulsion unit. A replacement linking signal is transmitted from a second lead unit. The remote propulsion unit allows the second lead propulsion unit to remotely control the operations of the remote propulsion unit when replacement identity stored onboard the remote propulsion unit matches an identity that is communicated in the replacement linking signal.
Abstract:
A method for controllably linking propulsion units in a vehicle consist includes transmitting a linking signal having an identity of a lead propulsion unit. A remote propulsion unit is remotely controlled by the lead unit when the identity matches a designated identity stored onboard the remote unit. A de-linking signal is transmitted from the lead unit when the lead unit is to be decoupled from the vehicle consist. The de-linking signal includes a replacement identity of a replacement propulsion unit. A replacement linking signal is transmitted from a second lead unit. The remote propulsion unit allows the second lead propulsion unit to remotely control the operations of the remote propulsion unit when replacement identity stored onboard the remote propulsion unit matches an identity that is communicated in the replacement linking signal.