Abstract:
A sensing system includes a leading sensor, a trailing sensor, and a route examining unit. The leading sensor is onboard a first vehicle of a vehicle system that is traveling along a route. The leading sensor measures first characteristics of the route as the vehicle system moves along the route. The trailing sensor is disposed onboard a second vehicle of the vehicle system. The trailing sensor measures second characteristics of the route as the vehicle system moves along the route. The route examining unit is disposed onboard the vehicle system and receives the first characteristics of the route and the second characteristics of the route to compare the first characteristics with the second characteristics. The route examining unit also identifies a segment of the route as being damaged based on a comparison of the first characteristics with the second characteristics.
Abstract:
A sensing system includes a leading sensor, a trailing sensor, and a route examining unit. The leading sensor is onboard a first vehicle of a vehicle system that is traveling along a route. The leading sensor measures first characteristics of the route as the vehicle system moves along the route. The trailing sensor is disposed onboard a second vehicle of the vehicle system. The trailing sensor measures second characteristics of the route as the vehicle system moves along the route. The route examining unit is disposed onboard the vehicle system and receives the first characteristics of the route and the second characteristics of the route to compare the first characteristics with the second characteristics. The route examining unit also identifies a segment of the route as being damaged based on a comparison of the first characteristics with the second characteristics.
Abstract:
A method for controllably linking propulsion units in a vehicle consist includes transmitting a linking signal having an identity of a lead propulsion unit. A remote propulsion unit is remotely controlled by the lead unit when the identity matches a designated identity stored onboard the remote unit. A de-linking signal is transmitted from the lead unit when the lead unit is to be decoupled from the vehicle consist. The de-linking signal includes a replacement identity of a replacement propulsion unit. A replacement linking signal is transmitted from a second lead unit. The remote propulsion unit allows the second lead propulsion unit to remotely control the operations of the remote propulsion unit when replacement identity stored onboard the remote propulsion unit matches an identity that is communicated in the replacement linking signal.
Abstract:
An imaging system includes a camera and a controller. The camera is configured to be disposed on a first vehicle system or at a wayside location along a route to generate image data within a field of view of the camera. The controller is configured to monitor a data rate at which the image data is provided from the camera. The controller also is configured to identify a stimulus event within the field of view of the camera based on a change in the data rate at which the image data is generated by the camera.
Abstract:
A sensing system includes a leading sensor, a trailing sensor, and a route examining unit. The leading sensor is onboard a first vehicle of a vehicle system that is traveling along a route. The leading sensor measures first characteristics of the route as the vehicle system moves along the route. The trailing sensor is disposed onboard a second vehicle of the vehicle system. The trailing sensor measures second characteristics of the route as the vehicle system moves along the route. The route examining unit is disposed onboard the vehicle system and receives the first characteristics of the route and the second characteristics of the route to compare the first characteristics with the second characteristics. The route examining unit also identifies a segment of the route as being damaged based on a comparison of the first characteristics with the second characteristics.
Abstract:
A sensing system includes a leading sensor, a trailing sensor, and a route examining unit. The leading sensor is onboard a first vehicle of a vehicle system that is traveling along a route. The leading sensor measures first characteristics of the route as the vehicle system moves along the route. The trailing sensor is disposed onboard a second vehicle of the vehicle system. The trailing sensor measures second characteristics of the route as the vehicle system moves along the route. The route examining unit is disposed onboard the vehicle system and receives the first characteristics of the route and the second characteristics of the route to compare the first characteristics with the second characteristics. The route examining unit also identifies a segment of the route as being damaged based on a comparison of the first characteristics with the second characteristics.
Abstract:
A communication system and method for communicatively linking vehicles in a vehicle consist determine a vehicle identifier for a first remote vehicle included in a vehicle consist formed from a lead vehicle and at least the first remote vehicle. The system and method communicate a wireless linking message addressed to the vehicle identifier from the lead vehicle to the first remote vehicle, and establish a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The communication link is established such that movement of the first remote vehicle is remotely controlled from the lead vehicle via the communication link. The communication link is established without an operator entering the first remote vehicle.
Abstract:
A communication system and method for communicatively linking vehicles in a vehicle consist determine a vehicle identifier for a first remote vehicle included in a vehicle consist formed from a lead vehicle and at least the first remote vehicle. The system and method communicate a wireless linking message addressed to the vehicle identifier from the lead vehicle to the first remote vehicle, and establish a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The communication link is established such that movement of the first remote vehicle is remotely controlled from the lead vehicle via the communication link. The communication link is established without an operator entering the first remote vehicle.
Abstract:
A method for controllably linking propulsion units in a vehicle consist includes transmitting a linking signal having an identity of a lead propulsion unit. A remote propulsion unit is remotely controlled by the lead unit when the identity matches a designated identity stored onboard the remote unit. A de-linking signal is transmitted from the lead unit when the lead unit is to be decoupled from the vehicle consist. The de-linking signal includes a replacement identity of a replacement propulsion unit. A replacement linking signal is transmitted from a second lead unit. The remote propulsion unit allows the second lead propulsion unit to remotely control the operations of the remote propulsion unit when replacement identity stored onboard the remote propulsion unit matches an identity that is communicated in the replacement linking signal.
Abstract:
An air brake monitoring system includes an air brake control module and an air brake monitoring module. The air brake control module is configured to control variation of an amount of pressure in a brake pipe of the vehicle to actuate brakes of a braking system of the vehicle. The air brake monitoring module is configured to obtain a reference replenishment volume corresponding to a volume of air used to recharge the braking system after application of the brakes of the braking system when the braking system when a first amount of brakes are operational, to obtain an actual replenishment volume corresponding to an actual volume of air used to recharge the braking system of the vehicle after a braking activity performed by the vehicle, and to generate a signal based on a comparison of the actual replenishment volume to the reference replenishment volume.