Abstract:
An environmentally resistant coating comprising silicon, titanium, chromium, and a balance of niobium and molybdenum for turbine components formed from molybdenum silicide-based composites. The turbine component may further include a thermal barrier coating disposed upon an outer surface of the environmentally resistant coating comprising zirconia, stabilized zirconia, zircon, mullite, and combinations thereof. The molybdenum silicide-based composite turbine component coated with the environmentally resistant coating and thermal barrier coating is resistant to oxidation at temperatures in the range from about 2000null F. to about 2600null F. and to pesting at temperatures in the range from about 1000null F. to about 1800null F.
Abstract:
A coated article, a coating for protecting an article, and a method for protecting an article are provided. The article comprises a metallic substrate and a substantially single-phase coating disposed on the substrate, wherein the coating comprises nickel (Ni) and at least about 30 atomic percent aluminum (Al); the coating further comprises a gradient in Al composition, the gradient extending from a first Al concentration level at an outer surface of the coating to a second Al concentration level at an interface between the substantially single-phase coating and the substrate, wherein the first Al concentration level is greater than the second Al concentration level and the second concentration level is at least about 30 atomic percent Al.
Abstract:
An article for use in a hot gas path of a gas turbine assembly, a metallic skin for such an article, and a method for making such an article are presented with, for example, the article comprising a spar, the spar providing mechanical support for the article and comprising a cooling fluid delivery system, a top end, and a bottom end; a standoff structure attached to the spar, the standoff structure comprising a plurality of spacing elements in a spaced-apart relation to each other, the spacing elements having first ends adjacent to the spar and second ends opposite to the first ends; a skin conformally surrounding the spar and the standoff structure, the skin comprising a top end and a bottom end, wherein the standoff structure separates the spar and the skin, wherein the plurality of spacing elements is disposed with an inner surface of the skin adjacent to the second ends of the spacing elements to form a plurality of plena between the spar and the skin, the plena in fluid communication with the cooling fluid delivery system, the skin comprising at least one metal selected from the group consisting of Rh, Pd, and Pt; and a base connecting the bottom end of the spar and the bottom end of the skin.
Abstract:
An airfoil having a melting temperature of at least about 1500null C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece is a semi-solid braze that comprises a first component and a second component. The first component of the semi-solid braze comprises a first element and a second metallic element, wherein the first element is one of titanium, palladium, zirconium, niobium, germanium, silicon, and hafnium, and the second metallic element is a metal selected from the group consisting of titanium, palladium, zirconium, niobium, hafnium, aluminum, chromium, vanadium, platinum, gold, iron, nickel, and cobalt, the second metallic element being different from the first element. The second component has a melting temperature of at least about 1450null C. and comprises one of niobium, molybdenum, titanium, hafnium, silicon, boron, aluminum, tantalum, germanium, vanadium, tungsten, zirconium, and chromium. This abstract is submitted in compliance with 37 C.F.R. 1.72(b) with the understanding that it will not be used to interpret or limit the scope of or meaning of the claims.
Abstract:
An environmentally resistant coating for improving the oxidation resistance of a niobium-based refractory metal intermetallic composite (Nb-based RMIC) at high temperatures, the environmentallly resistant coating comprising silicon, titanium, chromium, and niobium. The invention includes a turbine system having turbine components comprising at least one Nb-based RMIC, the environmentally resistant coating disposed on a surface of the Nb-based RMIC, and a thermal barrier coating disposed on an outer surface of the environmentally resistant coating. Methods of making a turbine component having the environmentally resistant coating and coating a Nb-based RMIC substrate with the environmentally resistant coating are also disclosed.
Abstract:
An airfoil having a melting temperature of at least about 1500null C. and comprising a first piece and a second piece joined at a bonded region to the first piece by a diffusion bond. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first molybdenum-based refractory metal intermetallic composite. The second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The diffusion bond is formed from a first metallic element disposed on a first surface of the first piece and a second metallic element disposed on at least one of the first surface and a second surface of the second piece, the second surface contacting the first surface, wherein the first and second metal form a composition having a melting temperature less than about 1400null C. This abstract is submitted in compliance with 37 C.F.R. 1.72(b) with the understanding that it will not be used to interpret or limit the scope of or meaning of the claims.
Abstract:
A niobium-silicide refractory metal intermetallic composite having enhanced material characteristics, such as oxidation resistance, creep resistance, and toughness, and turbine components made therefrom. The composite comprises between about 14 atomic percent and about 26 atomic percent titanium; between about 1 atomic percent and about 4 atomic percent hafnium; up to about 6 atomic percent tantalum; between about 12 atomic percent and about 22 atomic percent silicon; up to about 5 atomic percent germanium; up to about 4 atomic percent boron; between about 7 atomic percent and about 14 atomic percent chromium; up to about 3 atomic percent iron; up to about 2 atomic percent aluminum; between about 1 atomic percent and about 3 atomic percent tin; up to about 2 atomic percent tungsten; up to about 2 atomic percent molybdenum; and a balance of niobium, wherein a ratio of a sum of atomic percentages of niobium and tantalum present in said niobium silicide refractory intermetallic composite to a sum of atomic percentages of titanium and hafnium present in said niobium silicide refractory intermetallic composite has a value between about 1.4 and about 2.2 (i.e.,1.4
Abstract:
A method for protecting an article from a high temperature, oxidative environment is presented, along with alloy compositions and ion plasma deposition targets suitable for use in the method. The method comprises providing a substrate, providing an ion plasma deposition target, and depositing a protective coating onto the substrate using the target in an ion plasma deposition process. The target comprises from about 2 atom percent to about 25 atom percent chromium, and the balance comprises aluminum.
Abstract:
A group of alloys suitable for use in a high-temperature, oxidative environment, a protective coating system comprising a diffusion barrier that comprises an alloy selected from the group, an article comprising the diffusion barrier layer, and a method for protecting an article from a high-temperature oxidative environment comprising disposing the diffusion barrier layer onto a substrate are presented.
Abstract:
A niobium-silicide refractory metal intermetallic composite adapted for use in a turbine component. The niobium-silicide refractory metal intermetallic composite comprises: between about 19 atomic percent and about 24 atomic percent titanium; between about 1 atomic percent and about 5 atomic percent hafnium; between about 16 atomic percent and about 22 atomic percent silicon; between about 7 atomic percent and about 14 atomic percent chromium; from about 1.5 atomic percent to about 3 atomic percent tin; and a balance of niobium. The niobium silicide refractory intermetallic composite contains a tetragonal phase, which comprises a volume fraction from 0.35 to 0.5 of the niobium silicide refractory intermetallic composite, and a hexagonal M3Si5 silicide phase (wherein M is at least one of Nb and Hf) which comprises a volume fraction comprises less than 0.25 of the niobium silicide refractory intermetallic composite. A ratio of the sum of atomic percentages of niobium and tantalum present in said niobium silicide refractory intermetallic composite to the sum of atomic percentages of titanium and of hafnium present in said niobium silicide refractory intermetallic composite has a value from 1.5 to 2.0.