Abstract:
A method for operating a renewable energy facility having a plurality of power sources includes defining a plurality of modes of operation for each of the plurality of power sources. The method also includes receiving one or more required active power set points for the renewable energy facility and/or groups of the plurality of power sources. Further, the method includes determining an operating mode command that defines which of the plurality of modes of operation to use for each of the plurality of power sources to reach the one or more required active power set points. Moreover, the method includes dynamically switching into the plurality of modes of operation defined in the operating mode command.
Abstract:
A distributed fault management system includes at least one sensor associated with a fuel cell system and at least one first fault management computing device coupled to the at least one sensor. The at least one first fault management computing device is configured to receive data associated with a first fault condition. The at least one first fault management computing device is further configured to generate a resolution to the first fault condition and transmit at least one resolution command signal to at least one second fault management computing device. The at least one resolution command signal configures the at least one second fault management computing device to use the resolution to resolve a second fault condition in a similar manner.
Abstract:
A method for controlling a renewable energy power system having at least one renewable energy asset connected to a power grid during a frequency event includes receiving, via a controller, a frequency signal of the power grid. The method also includes determining a time constant for a frequency filter assembly as a function of two or more parameters of the frequency signal. Further, the method includes filtering the frequency signal via the frequency filter assembly using the determined time constant. Moreover, the method includes determining a power command for the at least one renewable energy asset using the filtered frequency signal. In addition, the method includes controlling the at least one renewable energy asset based on the power command.
Abstract:
A method for controlling an energy generation and storage system using a multi-layer architecture is provided. The method includes determining, by one or more control devices, a power or energy generation for the energy generation and storage system at a first layer of the multi-layer architecture. The method includes determining, by the one or more control devices, a power or energy set point for the system at a second layer of the multi-layer architecture. The method includes controlling, by the one or more control devices, the energy generation and storage system based, at least in part, on the power or energy setpoint.
Abstract:
A method for automatically controlling a renewable energy facility having a plurality of power sources includes operating, via a farm-level controller, the hybrid renewable energy facility at a first farm-level power set point. The method also includes modifying, via the farm-level controller, the first power set point to a second farm-level power set point. In response to modifying the first power set point to the second farm-level power set point, the method includes generating one or more power change requests for individual controllers of the plurality of power sources. Further, the method includes generating a power output via the plurality of power sources so as to transfer power generation from one of the plurality of power sources to another while minimizing the impact on farm-level production.
Abstract:
A cooling system for cooling a temperature-dependent power device includes an active cooling device and a controller to generate and transmit a drive signal thereto to selectively activate the device. The controller receives an input from sensors regarding the cooling device power consumption and measured operational parameters of the power equipment—including the power device output power if the device is a power producing device or the power device input power if the device is a power consuming device. The controller generates and transmits a drive signal to the cooling device based on the cooling device power consumption and the measured power device input or output power in order to cause the active cooling device to selectively cool the heat producing power device. A net system power output or total system power input can be maximized/minimized by controlling an amount of convection cooling provided by the cooling device.
Abstract:
A system and method are provided for controlling a wind farm. Accordingly, a demand signal is received from the electrical grid. The farm-level controller also receives a plurality of capability metrics from each wind turbines, which include, at least, a steady-state power availability, a transient power availability and a responsive capability of each wind turbine. The farm-level controller determines a power production capability profile for each wind turbine and determines the availability of each wind turbine to meet at least a portion of the demand signal based on the power production capability profiles. The farm-level controller also determines which portion of the demand signal to be satisfied by each wind turbine based on the availability and the power production capability for each wind turbine.
Abstract:
A protection circuit for a fuel cell coupled to a load. The protection circuit includes a switch and a controller. The switch is coupled between the fuel cell and an auxiliary load. The switch is configured to selectively couple the auxiliary load to the fuel cell. The controller is coupled to the switch. The controller is configured to control the switch to couple the auxiliary load to the fuel cell when the load demands a reduction in power output from the fuel cell. The controller is further configured to maintain the power output from said fuel cell at an initial level.
Abstract:
A solar power conversion system includes a photovoltaic array having photovoltaic modules for generating direct current (DC) power. A power converter is provided in the system for converting the DC power to alternating current (AC) power. A transformer is coupled between the power converter and a power grid for transmitting the AC power to the power grid. The transformer is connected to the power grid at the point of common coupling (PCC) and to the power converter at output terminals. A reactance estimation module is provided in the system for estimating a short circuit reactance at PCC based on a small change in a measured voltage at output terminals with respect to a small change in a measured reactive power at the output terminals. Further, a maximum reactive power estimation module estimates a maximum reactive power based on the estimated reactance, the measured voltage at output terminals, and the measured reactive power at the output terminals. A controller in the system generates switching command signals for the power converter based on the measured voltage at output terminals and the estimated maximum reactive power.
Abstract:
A power system includes a first power asset include a first power source and a first power controller. The first power controller includes a first filter configured to receive an error amount at a first frequency range and a second power controller includes a second filter configured to receive the error amount at a second frequency range. The first power controller is configured to instruct the first power source to produce a first amount of power, adjust the first amount of power based on the error amount received by the first filter until the error amount received is substantially zero. When the error amount received is substantially zero, the first power controller is configured to determine a first desired operating amount of power based on the first power source, and adjust the first amount of power based on the first desired operating amount of power.