Abstract:
The present disclosure generally relates to a sealed metal laminate structure comprising: a metal layer having a first surface and an opposite second surface; a first enamel layer laminated on the first surface of the metal layer, except at an exposed metal protrusion at a perimeter edge of the sealed metal laminate structure; a second enamel layer laminated on the second surface of the metal layer, except at the exposed metal protrusion at the perimeter edge of the sealed laminate structure; and a phosphate sealer deposited on the exposed metal protrusion of the sealed metal laminate structure. The present disclosure also relates to a metal laminate structure without a phosphate sealer. In addition, systems and methods for treating workpieces, including metal laminate structures, are discussed.
Abstract:
A seal includes a housing having a back plate and a front plate. A supporting bristle layer is disposed adjacent to the back plate, and bristles in the supporting bristle layer have a first diameter. A sealing bristle layer is disposed adjacent to the supporting bristle layer, and bristles in the sealing bristle layer have a second diameter. A shielding/protecting bristle layer is disposed adjacent to the sealing bristle layer, and bristles in the shielding/protecting bristle layer have a third diameter. The second diameter is smaller than both the first diameter and the third diameter.
Abstract:
Systems and methods for controlled and precise EDM manufacturing of a component are disclosed. In one embodiment, a system includes: a tank for holding a fluid; a first electrode array in the tank, the first electrode array including a plurality of electrodes configured to shape a workpiece; a workpiece fixture for positioning the workpiece at least partially immersed in the fluid and proximate the first electrode array; a pulse generator for creating an electric discharge between the workpiece and the first electrode array to remove material from the workpiece; a gap sensing circuit communicatively connected to the workpiece and the first electrode array, the gap sensing circuit configured to monitor the electric discharge between the workpiece and the first electrode array; and a computing device communicatively connected to the gap sensing circuit and the workpiece fixture, the computing device manipulating a position of the workpiece in the tank relative the first electrode array based upon data obtained from the gap sensing circuit.
Abstract:
Embodiments of the invention are related generally to electromagnetic machines and, more particularly, to a suspension system and related methods for the attachment of the stator core of an electromagnetic machine to a surrounding frame or enclosure. In one embodiment, the invention provides a system for supporting a stator core of an electromagnetic machine, the system comprising: a rigid frame structure including: an upper portion; and a lower portion beneath the upper portion; a first plurality of wire rope members, each having a first end and a second end; and a first plurality of attachment devices for affixing at least one of the first end or the second end of each of the first plurality of wire rope members to the upper portion.
Abstract:
A seal assembly between a rotor and a stator is disclosed. In one embodiment, the seal assembly includes: a rotor; a stator positioned around the rotor; and a plurality of seal leaves positioned between the rotor and the stator, the plurality of seal leaves circumferentially stacked around the rotor to define a seal ring between the rotor and the stator, wherein gaps between adjacent seal leaves are partially filled, such that contact faces and residual gaps are between adjacent seal leaves, wherein the contact faces generate friction to dampen vibrations during operation. Such damping effects still allow the compliant motion of the seal leaves with minimal leaf vibration. Also, thicker and more resilient leaves may be applied with reduced leakage through the root gaps.
Abstract:
Various embodiments include a sealed laminated metal structure. This laminated metal structure has a metal layer, where the metal layer has a first surface and an opposite second surface. A material is laminated on each of the first and second surfaces of the metal layer. In some cases, the laminated metal structure is removed from a larger laminated sheet of metal. The laminated metal structure is subjected to alternating current electrolytic deburring and cleaning to remove any burrs along the perimeter edge. After deburring and cleaning, a sealer, which is a phosphate compound, is deposited on the perimeter edge of the laminated metal structure where the metal is exposed using alternating current.
Abstract:
Provided are a component and an additive manufacturing method for fabricating a component. The additive manufacturing method for fabricating a component includes providing a first wire segment and a second wire segment, the first and second wire segments each having a cross-sectional stackable geometry; positioning the first wire segment into an alignment with the second wire segment to form a workpiece stack, the alignment aligning adjacent surfaces in a line of sight direction; and directing an energy beam toward the first wire segment and the second wire segment along the alignment to weld the first wire segment to the second wire segment to form a welded stack. The component includes a workpiece stack comprising a plurality of wire segments welded together along aligned adjacent surfaces.
Abstract:
A seal includes a housing having a back plate and a front plate. A supporting bristle layer is disposed adjacent to the back plate, and bristles in the supporting bristle layer have a first diameter. A sealing bristle layer is disposed adjacent to the supporting bristle layer, and bristles in the sealing bristle layer have a second diameter. A shielding/protecting bristle layer is disposed adjacent to the sealing bristle layer, and bristles in the shielding/protecting bristle layer have a third diameter. The second diameter is smaller than both the first diameter and the third diameter.
Abstract:
The present disclosure generally relates to a sealed metal laminate structure comprising: a metal layer having a first surface and an opposite second surface; a first enamel layer laminated on the first surface of the metal layer, except at an exposed metal protrusion at a perimeter edge of the sealed metal laminate structure; a second enamel layer laminated on the second surface of the metal layer, except at the exposed metal protrusion at the perimeter edge of the sealed laminate structure; and a phosphate sealer deposited on the exposed metal protrusion of the sealed metal laminate structure. The present disclosure also relates to a metal laminate structure without a phosphate sealer. In addition, systems and methods for treating workpieces, including metal laminate structures, are discussed.
Abstract:
A seal assembly between a rotor and a stator is disclosed. In one embodiment, the seal assembly includes: a rotor; a stator positioned around the rotor; and a plurality of seal leaves positioned between the rotor and the stator, the plurality of seal leaves circumferentially stacked around the rotor to define a seal ring between the rotor and the stator, wherein gaps between adjacent seal leaves are partially filled, such that contact faces and residual gaps are between adjacent seal leaves, wherein the contact faces generate friction to dampen vibrations during operation. Such damping effects still allow the compliant motion of the seal leaves with minimal leaf vibration. Also, thicker and more resilient leaves may be applied with reduced leakage through the root gaps.