Abstract:
Devices and methods of forming an integrated circuit and a FinFET device with a planarized permanent layer are provided. In an embodiment, a method of forming a planarized permanent layer includes providing a base substrate that has an uneven surface topography. A permanent layer is conformally formed over the base substrate. The permanent layer includes raised portions and sunken portions that correspond to the surface topography of the base substrate. A sacrificial layer is conformally formed over the permanent layer. The sacrificial layer and the raised portions of the permanent layer are chemical-mechanical planarized to provide the planarized permanent layer. The sacrificial layer is substantially completely removed after chemical-mechanical planarizing.
Abstract:
Devices and methods of forming an integrated circuit and a FinFET device with a planarized permanent layer are provided. In an embodiment, a method of forming a planarized permanent layer includes providing a base substrate that has an uneven surface topography. A permanent layer is conformally formed over the base substrate. The permanent layer includes raised portions and sunken portions that correspond to the surface topography of the base substrate. A sacrificial layer is conformally formed over the permanent layer. The sacrificial layer and the raised portions of the permanent layer are chemical-mechanical planarized to provide the planarized permanent layer. The sacrificial layer is substantially completely removed after chemical-mechanical planarizing.
Abstract:
A method includes providing a gate structure having a dummy gate, a first spacer along a side of the gate. The dummy gate and the spacer are removed to expose a gate dielectric. A second spacer is deposited on at least one side of a gate structure cavity and a top of the gate dielectric. A bottom portion of the second spacer is removed to expose the gate dielectric and the gate structure is wet cleaned.
Abstract:
A semiconductor structure includes a source region, a drain region, a channel region and a gate region over a bulk silicon substrate. The gate region further includes a dielectric layer and one or more work function layers disposed over the dielectric layer. A first filler material, such as a flowable oxide is provided over the source region and the drain region. A second filler material, such as an organic material, is provided within the gate region. The first filler material and the second filler material are selectively removed to create, source, drain and gate openings. The gate, source and drain openings are filled simultaneously with a metal, such as tungsten, to create a metal gate structure, source contact and drain contact.