Abstract:
Methods for forming a gate structure of a circuit structure are provide. The methods for forming the gate structure may include: forming a first gate pattern in a gate mask layer, the forming including a first etching of rounded corner portions of the first gate pattern; forming a second gate pattern in the gate mask layer, the second gate pattern at least partially overlapping the first gate pattern, the forming including a second etching of rounded corner portions of the second gate pattern; and, etching the gate mask layer using the first gate pattern and second gate pattern to form the gate structure.
Abstract:
Methods for fabricating integrated circuits are provided. One method includes decomposing a master pattern layout for a semiconductor device layer that includes a target metal line with a target interconnecting via/contact into a first sub-pattern and a second sub-pattern. The target metal line is decomposed into a first line feature pattern that is part of the first sub-pattern and a second line feature pattern that is part of the second sub-pattern such that the first and second line feature patterns have overlapping portions defining a stitch that corresponds to the target interconnecting via/contact. A first photomask is generated that corresponds to the first sub-pattern. A second photomask is generated that corresponds to the second sub-pattern.
Abstract:
Methods for forming a gate structure of a circuit structure are provide. The methods for forming the gate structure may include: forming a first gate pattern in a gate mask layer, the forming including a first etching of rounded corner portions of the first gate pattern; forming a second gate pattern in the gate mask layer, the second gate pattern at least partially overlapping the first gate pattern, the forming including a second etching of rounded corner portions of the second gate pattern; and, etching the gate mask layer using the first gate pattern and second gate pattern to form the gate structure.
Abstract:
A method for fabricating an integrated circuit includes providing an semiconductor wafer includes forming in an upper mandrel layer a first upper mandrel having a first critical dimension and a second upper mandrel having a second critical dimension; forming upper sidewall spacers along sidewalls of the first upper mandrel while leaving the second upper mandrel without sidewall spacers; removing the first upper mandrel from between the upper sidewall spacers; transferring a pattern of the upper sidewall spacers and of the second upper mandrel into a lower mandrel layer to form first lower mandrels according to the pattern of the upper sidewall spacers and a second lower mandrel according to the pattern of the second upper mandrel; and forming lower sidewall spacers along sidewalls of the first and second lower mandrels.
Abstract:
Methods for fabricating integrated circuits are provided. One method includes decomposing a master pattern layout for a semiconductor device layer that includes a target metal line with a target interconnecting via/contact into a first sub-pattern and a second sub-pattern. The target metal line is decomposed into a first line feature pattern that is part of the first sub-pattern and a second line feature pattern that is part of the second sub-pattern such that the first and second line feature patterns have overlapping portions defining a stitch that corresponds to the target interconnecting via/contact. A first photomask is generated that corresponds to the first sub-pattern. A second photomask is generated that corresponds to the second sub-pattern.