Abstract:
A reticle inspection system and related method are disclosed. The system includes a concave spherical mirror positioned adjacent a side of the reticle that is configured to reflect inspection light transmitted through the reticle back towards and through the reticle. A sensor is configured to create at least one of: a first inspection image representative of a circuit pattern of the reticle based on transmission of the inspection light through the first side of the reticle and a reflection thereof by the concave spherical mirror through the second side of the reticle, and a second inspection image representative of the circuit pattern of the reticle based on the reflection of the inspection light from the first side of the reticle. A controller is configured to identify a defect in the reticle based on at least one of the first inspection image and the second inspection image.
Abstract:
An approach for IR-based metrology for detecting stress and/or defects around TSVs of semiconductor devices is provided. Specifically, in a typical embodiment, a beam of IR light will be emitted from an IR light source through the material around the TSV. Once the beam of IR light has passed through the material around the TSV, the beam will be analyzed using one or more algorithms to determine information about TSV stress and/or defects such as imbedded cracking, etc. In one embodiment, the beam of IR light may be split into a first portion and a second portion. The first portion will be passed through the material around the TSV while the second portion is routed around the TSV. After the first portion has passed through the material around the TSV, the two portions may then be recombined, and the resulting beam may be analyzed as indicated above.
Abstract:
Approaches for reducing through-silicon via (TSV) stress are provided. Specifically, provided is a device comprising a substrate and a TSV formed in the substrate, the TSV having an element patterned therein. The TSV further comprises a set of openings adjacent the element that are subsequently filled with a TSV fill material. The element may be patterned according to any number of shapes (e.g., circle, oval, rectangle, etc.) to optimize the stress distribution for the TSV. The element is patterned and provided within the TSV in order to reduce or compensate for stress forces caused by a change in volume of the conductive fill materials of the openings of the TSV. These approaches apply to both single TSVs and a plurality of TSVs (e.g., arranged as a matrix).
Abstract:
Methods for enabling in-line detection of TS-PC short defects at the TS-CMP processing stage are provided. Embodiments include providing a semiconductor substrate, the substrate having a plurality of partially formed MOSFET devices; performing a first defect inspection on the substrate, the first inspection including ACC; identifying one or more BVC candidates on the substrate based on the first inspection; performing a second defect inspection on the one or more BVC candidates, the second inspection performed without ACC; and detecting one or more BVC defects on the substrate based on the one or more BVC candidates appearing during both the first and second inspections.
Abstract:
An approach for IR-based metrology for detecting stress and/or defects around TSVs of semiconductor devices is provided. Specifically, in a typical embodiment, a beam of IR light will be emitted from an IR light source through the material around the TSV. Once the beam of IR light has passed through the material around the TSV, the beam will be analyzed using one or more algorithms to determine information about TSV stress and/or defects such as imbedded cracking, etc. In one embodiment, the beam of IR light may be split into a first portion and a second portion. The first portion will be passed through the material around the TSV while the second portion is routed around the TSV. After the first portion has passed through the material around the TSV, the two portions may then be recombined, and the resulting beam may be analyzed as indicated above.
Abstract:
A reticle inspection system and related method are disclosed. The system includes a concave spherical mirror positioned adjacent a side of the reticle that is configured to reflect inspection light transmitted through the reticle back towards and through the reticle. A sensor is configured to create at least one of: a first inspection image representative of a circuit pattern of the reticle based on transmission of the inspection light through the first side of the reticle and a reflection thereof by the concave spherical mirror through the second side of the reticle, and a second inspection image representative of the circuit pattern of the reticle based on the reflection of the inspection light from the first side of the reticle. A controller is configured to identify a defect in the reticle based on at least one of the first inspection image and the second inspection image.
Abstract:
An approach for IR-based metrology for detecting stress and/or defects in around TSVs of semiconductor devices is provided. Specifically, in a typical embodiment, a beam of IR light will be emitted from an IR light source through the material around the TSV. Once the beam of IR light has passed through the material around the TSV, the beam will be analyzed using one or more algorithms to determine information about TSV stress and/or defects such as imbedded cracking, etc. In one embodiment, the beam of IR light may be split into a first portion and a second portion. The first portion will be passed through the material around the TSV while the second portion is routed around the TSV. After the first portion has passed through the material around the TSV, the two portions may then be recombined, and the resulting beam may be analyzed as indicated above.
Abstract:
An approach for IR-based metrology for detecting stress and/or defects around TSVs of semiconductor devices is provided. Specifically, in a typical embodiment, a beam of IR light will be emitted from an IR light source through the material around the TSV. Once the beam of IR light has passed through the material around the TSV, the beam will be analyzed using one or more algorithms to determine information about TSV stress and/or defects such as imbedded cracking, etc. In one embodiment, the beam of IR light may be split into a first portion and a second portion. The first portion will be passed through the material around the TSV while the second portion is routed around the TSV. After the first portion has passed through the material around the TSV, the two portions may then be recombined, and the resulting beam may be analyzed as indicated above.
Abstract:
A method and apparatus for detecting VC defects and determining the exact shorting locations based on charging dynamics induced by scan direction variation are provided. Embodiments include providing a substrate having at least a partially formed device thereon, the partially formed device having at least a word-line, a share contact, and a bit-line; performing a first EBI on the at least partially formed device in a single direction; classifying defects by ADC based on the first EBI inspection; selecting DOI among the classified defects for further review; performing a second EBI on the DOI in a first, second, third, and fourth direction; comparing a result of the first direction against a result of the second direction and/or a result of the third direction against a result of the fourth direction; and determining a shorting location for each DOI based on the one or more comparisons.
Abstract:
A method and device for characterizing a DC parameter of a SRAM device based on TDCD are provided. Embodiments include forming a SRAM test device, the SRAM test device having a top edge and a bottom edge and at least a first and a second S/D contact, a gate contact, and a channel region; inducing an inversion charge in the channel region through the gate contact; scanning the first S/D contact with an ebeam subsequent to inducing the inversion charge; and characterizing at least one DC parameter of the SRAM test device based on a dissipation of the inversion charge between the steps of inducing and scanning