Abstract:
Failure types that caused defective items to fail testing are identified, the defective items are grouped by the failure types to produce failure-type groups, and the defective items are analyzed to identify defect types that caused the failures. Failure-type limited yield within each of the failure-type groups, and failure-type group-specific defect ratio based on proportions of the defect types within each of the failure-type groups are determined. Additionally, each failure-type group-specific defect ratio is weighted using the failure-type limited yield to produce a weighted failure-type group-specific defect limited yield. For each of the defect types, the weighted failure-type group-specific defect limited yield from each of the failure-type groups is combined to produce the failure-type influenced defect-type total limited yield. Matrix processing is used for the weighting and combination processes. The defect types are ranked based on the failure-type influenced defect-type total limited yield.
Abstract:
A method for depositing a conductor in the via opening electronic structure removes the via bottom liner so that the conductor deposited in the via opening directly contacts the underlying conductive layer. The method includes depositing amorphous silicon over the dielectric layer and the liner layer on the via opening sidewalls and bottom. The amorphous silicon extends substantially over the entire via opening while leaving below a void within the via opening. The amorphous silicon over the via opening and on the via opening bottom and the liner layer on the via opening bottom are anisotropically etched to leave a layer of amorphous silicon over the dielectric layer and the via opening side walls. The amorphous silicon is then removed to form a via opening having a substantially open-bottom liner. The conductor is then deposited in the via opening and contacts the underlying conductive layer.
Abstract:
Failure types that caused defective items to fail testing are identified, the defective items are grouped by the failure types to produce failure-type groups, and the defective items are analyzed to identify defect types that caused the failures. Failure-type limited yield within each of the failure-type groups, and failure-type group-specific defect ratio based on proportions of the defect types within each of the failure-type groups are determined. Additionally, each failure-type group-specific defect ratio is weighted using the failure-type limited yield to produce a weighted failure-type group-specific defect limited yield. For each of the defect types, the weighted failure-type group-specific defect limited yield from each of the failure-type groups is combined to produce the failure-type influenced defect-type total limited yield. Matrix processing is used for the weighting and combination processes. The defect types are ranked based on the failure-type influenced defect-type total limited yield.
Abstract:
A SRAM-like electron beam inspection (EBI) structure and method for determining defects in integrated circuits inline during the production process at a level that enables earlier detection during fabrication. Initial layers, such as active layer, poly gate and contact of an IC are first fabricated, and a conductive mesh with horizontal components is provided above the contact layers connecting contact nodes of the contact layers. Voltage contrast is observed during EBI to detect short-circuits, open-circuits, or leakage currents formed between the horizontal components of the conductive mesh and metallized islands placed therebetween.