Abstract:
An engine assembly includes an engine, a first turbine operatively connected to the engine, a first valve configured to modulate flow to the first turbine, a controller configured to transmit a primary command signal to the first valve and at least one sensor configured to transmit a sensor feedback to the controller. The controller is configured to obtain a first model output based at least partially on a desired total compressor pressure ratio (βc). A first delta factor is obtained based at least partially on the desired total compressor pressure ratio (βc) and the sensor feedback. The controller is configured to obtain a first valve optimal position based at least partially on the first model output and the first delta factor. The output of the engine is controlled by commanding the first valve to the first valve optimal position.
Abstract:
A method of estimating a boost pressure of a turbocharger is disclosed. A throttle body temperature is estimated as a function of engine operating parameters. An intake air mass flow and an exhaust mass flow are estimated as a function of the throttle body temperature. A turbine inlet pressure and a turbine outlet pressure are estimated as a function of engine operating parameters. A turbine speed is estimated as a function of the intake air mass flow, exhaust mass flow and turbine inlet and outlet pressure. The boost pressure is estimated as a function of the turbine speed. Estimation of the maximum boost pressure of a turbocharged internal combustion engine is performed method cyclically as follows: estimating a throttle temperature, estimating an air mass flow and an exhaust mass flow, estimating a turbine inlet pressure and a turbine outlet pressure, estimating a turbine speed, and estimating the maximum boost pressure.
Abstract:
The present disclosure relates to a method for operating an internal combustion engine for a motor vehicle, in particular a passenger car having a turbocharger with a compressor and a turbine. The method includes determining a change quantity of a gas flow quantity of a gas flow through the internal combustion engine and regulating the compressor based on this change quantity.
Abstract:
An internal combustion engine has a cylinder configured to combust an air-fuel mixture and expel an exhaust gas and a turbocharger for generating a pressurized airflow to the cylinder. The turbocharger includes a turbine scroll defining an inlet and an outlet, an exhaust gas driven rotating assembly having a turbine wheel disposed inside the turbine scroll, and a waste-gate defining an opening. A first sensor detects turbine outlet pressure. A second sensor detects turbine inlet temperature. A controller determines an effective area of the waste-gate opening and an exhaust gas mass flow-rate. The controller also determines a turbine inlet pressure in response to the detected turbine outlet pressure and the turbine inlet temperature, and the determined waste-gate opening effective area and the exhaust gas mass flow-rate. The controller additionally regulates a supply of fuel to the cylinder corresponding to the pressurized airflow affected by the determined turbine inlet pressure.
Abstract:
The present disclosure relates to a method for operating an internal combustion engine for a motor vehicle, in particular a passenger car having a turbocharger with a compressor and a turbine. The method includes determining a change quantity of a gas flow quantity of a gas flow through the internal combustion engine and regulating the compressor based on this change quantity.
Abstract:
A method for the load-dependent opening and closing of a blow-off valve flap of an internal combustion engine with a turbocharger is provided, in which by at least one detector on an internal combustion engine inlet side, at least one air pressure value, one air mass flow value and/or an opening position of a valve of the suction pipe are detected and transmitted to a control device. By the control device from the received values a current load of the internal combustion engine is determined, and by the control device based on the determined current load of the internal combustion engine and/or of the turbocharger, control inputs for an actuator of the blow-off valve flap are generated and transmitted to the actuator. The blow-off valve flap is completely opened, partially opened, minimally opened or closed and held in the respective position by the actuator dependent on the current load.
Abstract:
An internal combustion engine has a cylinder configured to combust an air-fuel mixture and expel an exhaust gas and a turbocharger for generating a pressurized airflow to the cylinder. The turbocharger includes a turbine scroll defining an inlet and an outlet, an exhaust gas driven rotating assembly having a turbine wheel disposed inside the turbine scroll, and a waste-gate defining an opening. A first sensor detects turbine outlet pressure. A second sensor detects turbine inlet temperature. A controller determines an effective area of the waste-gate opening and an exhaust gas mass flow-rate. The controller also determines a turbine inlet pressure in response to the detected turbine outlet pressure and the turbine inlet temperature, and the determined waste-gate opening effective area and the exhaust gas mass flow-rate. The controller additionally regulates a supply of fuel to the cylinder corresponding to the pressurized airflow affected by the determined turbine inlet pressure.
Abstract:
A method of estimating a boost pressure of a turbocharger is disclosed. A throttle body temperature is estimated as a function of engine operating parameters. An intake air mass flow and an exhaust mass flow are estimated as a function of the throttle body temperature. A turbine inlet pressure and a turbine outlet pressure are estimated as a function of engine operating parameters. A turbine speed is estimated as a function of the intake air mass flow, exhaust mass flow and turbine inlet and outlet pressure. The boost pressure is estimated as a function of the turbine speed. Estimation of the maximum boost pressure of a turbocharged internal combustion engine is performed method cyclically as follows: estimating a throttle temperature, estimating an air mass flow and an exhaust mass flow, estimating a turbine inlet pressure and a turbine outlet pressure, estimating a turbine speed, and estimating the maximum boost pressure.
Abstract:
A method for the load-dependent opening and closing of a blow-off valve flap of an internal combustion engine with a turbocharger is provided, in which by at least one detector on an internal combustion engine inlet side, at least one air pressure value, one air mass flow value and/or an opening position of a valve of the suction pipe are detected and transmitted to a control device. By the control device from the received values a current load of the internal combustion engine is determined, and by the control device based on the determined current load of the internal combustion engine and/or of the turbocharger, control inputs for an actuator of the blow-off valve flap are generated and transmitted to the actuator. The blow-off valve flap is completely opened, partially opened, minimally opened or closed and held in the respective position by the actuator dependent on the current load.