Abstract:
Methods for disambiguating the location of a radar contact using an N×M dimensioned radar array are provided. In the horizontal plane, the method comprises transmitting a first radar energy pattern in a direction, collecting reflected energy of the first radar energy pattern from the contact, transmitting a second radar energy pattern in the direction and collecting reflected energy of the second radar energy pattern from the contact. The method further comprises comparing the collected energy of the first radar energy pattern and the collected energy of the second radar energy pattern and determining if the contact is located in a side lobe or a main lobe of the first and second radar energy pattern based on the comparison. In the vertical plane, other similar embodiments may be used to determine if the radar antenna(s) are blocked by an obstacle.
Abstract:
A flexible, printable antenna for automotive radar. The antenna can be printed onto a thin, flexible substrate, and thus can be bent to conform to a vehicle body surface with compound curvature. The antenna can be mounted to the interior of a body surface such as a bumper fascia, where it cannot be seen but can transmit radar signals afield. The antenna can also be mounted to and blended into the exterior of an inconspicuous body surface, or can be made transparent and mounted to the interior or exterior of a glass surface. The antenna includes an artificial impedance surface which is tailored based on the three-dimensional shape of the surface to which the antenna is mounted and the desired radar wave pattern. The antenna can be used for automotive collision avoidance applications using 22-29 GHz or 76-81 GHz radar, and has a large aperture to support high angular resolution of radar data.
Abstract:
A flexible, printable antenna for automotive radar. The antenna can be printed onto a thin, flexible substrate, and thus can be bent to conform to a vehicle body surface with compound curvature. The antenna can be mounted to the interior of a body surface such as a bumper fascia, where it cannot be seen but can transmit radar signals afield. The antenna can also be mounted to and blended into the exterior of an inconspicuous body surface, or can be made transparent and mounted to the interior or exterior of a glass surface. The antenna includes an artificial impedance surface which is tailored based on the three-dimensional shape of the surface to which the antenna is mounted and the desired radar wave pattern. The antenna can be used for automotive collision avoidance applications using 22-29 GHz or 76-81 GHz radar, and has a large aperture to support high angular resolution of radar data.