Abstract:
A method for controlling a powertrain of a vehicle includes calculating, via a controller, an optimal torque target for the powertrain as a function of system limits of the vehicle. The method includes commanding, via transmission of an output torque signal, an actual output torque of the powertrain to pursue or follow the calculated optimal torque target during a steady-state torque request condition. Additionally, the method includes detecting a predetermined vehicle event during the steady-state torque request condition, and shaping the output torque signal via the controller. A variable gain factor may be used in response to detection of the predetermined vehicle event to allow the output torque signal to temporarily deviate from the calculated optimal torque target during the steady-state torque request condition. A powertrain has an engine, an electric machine, and a controller programmed to execute the method.
Abstract:
A powertrain system employing multiple propulsion torque actuators is described. A method for controlling the powertrain system includes interpreting a driver request, including determining a driver torque request and a regenerative braking request based upon driver inputs to an accelerator pedal and a brake pedal. A desired request is determined based upon the driver torque request and the regenerative braking request. Torque limits for the powertrain system are coordinated based upon the desired request, the driver torque request, and a previous driver torque request to determine upper and lower output torque limits, and the upper and lower output torque limits are combined with system constraints to generate a final torque request. The final torque request is employed to determine torque commands for the propulsion torque actuators, and the propulsion torque actuators are controlled based upon the torque commands for the propulsion torque actuators.
Abstract:
A powertrain system employing multiple propulsion torque actuators is described. A method for controlling the powertrain system includes interpreting a driver request, including determining a driver torque request and a regenerative braking request based upon driver inputs to an accelerator pedal and a brake pedal. A desired request is determined based upon the driver torque request and the regenerative braking request. Torque limits for the powertrain system are coordinated based upon the desired request, the driver torque request, and a previous driver torque request to determine upper and lower output torque limits, and the upper and lower output torque limits are combined with system constraints to generate a final torque request. The final torque request is employed to determine torque commands for the propulsion torque actuators, and the propulsion torque actuators are controlled based upon the torque commands for the propulsion torque actuators.
Abstract:
A method for controlling a powertrain of a vehicle includes calculating, via a controller, an optimal torque target for the powertrain as a function of system limits of the vehicle. The method includes commanding, via transmission of an output torque signal, an actual output torque of the powertrain to pursue or follow the calculated optimal torque target during a steady-state torque request condition. Additionally, the method includes detecting a predetermined vehicle event during the steady-state torque request condition, and shaping the output torque signal via the controller. A variable gain factor may be used in response to detection of the predetermined vehicle event to allow the output torque signal to temporarily deviate from the calculated optimal torque target during the steady-state torque request condition. A powertrain has an engine, an electric machine, and a controller programmed to execute the method.