Abstract:
A method of determining ride share compatibility. Vehicle data acquisition devices are employed to collect user attribute information relating to a travel route and locations traveled by the operator. The attribute information includes regularity data, frequency data, and duration data. A regression analysis is applied by a processor for using the regularity data, the frequency data, and the duration data, for identifying an importance probability of each of the locations visited by the operator. A match is determined between the operator and a potential travel partner traveling to locations in proximity to the locations traveled by the operator.
Abstract:
The present disclosure relates to a method, for providing a relevant information set, based on vehicle crowd data, to vehicles. The method includes receiving, from a plurality of participating vehicles, vehicle crowd data relating to a condition sensed by the participating vehicles in a geographic area, yielding received vehicle crowd data. In one embodiment, the condition includes at least one pre-identified condition selected from a group consisting of cruise-control engagement, road hazard, icy road, other slick-road condition, and vehicle-security violation. The method also includes filtering the received vehicle crowd data, yielding relevant vehicle crowd data, and constructing, by the device, using the relevant vehicle crowd data, the relevant information set. The method further includes sending the relevant information set for delivery to one or more user vehicles associated with the geographic area.
Abstract:
A system comprising a processor and comprising computer-executable instructions that cause a processor to perform operations comprising determining that user-system location data is needed by an application running at a user device. Operations of the system further include determining a first user-system location and determining a privacy parameter based on a location-accuracy requirement associated with the application. The operations further include generating, based on the privacy parameter and the first user-system location, privacy-adjusted location data indicating a second user-system location being less accurate than the first user-system location by an amount corresponding to a value of the privacy parameter. The operations also include providing the privacy-adjusted location data to a destination for use in providing a location-dependent service by way of the application at the user device.
Abstract:
A method for rendering vehicle information includes receiving from an application of a user device a request for information. The request identifies the application requesting vehicle information. A filter is applied to determine whether the requested information is allowable information. The allowable information includes information that the vehicle is authorized to output to the user device. A format-type of information is determined to be output to the user device. A quality level of information is determined to provide to the user device. The quality level of information determined as a function of variable parameters in response to the requested information being allowable information. The vehicle information is processed as a function of the quality level of information and the format-type of information. The processed vehicle information is output to the user device.
Abstract:
A method and system for tracking and predicting usage trends for in-vehicle infotainment system applications are disclosed. Application usage data are collected in the infotainment systems of many road vehicles. Vehicle context relevance indicators are also provided, using data from the vehicle CAN bus or other data bus. The context relevance indicators—which indicate vehicle contextual situations such as traffic and weather conditions, presence of back seat passengers, length of driving trip, etc.—are cross-referenced to the application usage data to determine which applications are likely to be used in which situations. Application usage data and application/context correlation data from many vehicles are collected on a central server and analyzed to provide various metrics which are indicative of application usage trends. The application usage trend data can be used by vehicle manufacturers to optimize future infotainment system designs.