Abstract:
An electromagnetic actuation system includes an actuator having an electrical coil, a magnetic core, and an armature. The system further includes a controllable drive circuit for selectively driving current through the electrical coil. A control module provides an actuator command to the drive circuit effective to drive current through the electrical coil to actuate the armature. The control module includes a magnetic force control module configured to adapt the actuator command to converge magnetic force within the actuator to a preferred force level.
Abstract:
A method for operating an electromagnetic actuator includes an actuation event utilizing a current waveform for the actuator characterized by an initial peak pull-in current in a first direction of current flow when the actuator is commanded to an actuated position; and a reversed peak current in a second opposite direction of current flow applied after the actuator is commanded to a rest position. The reversed peak current has a magnitude that is greater than the magnitude of the initial peak pull-in current.
Abstract:
A transmission assembly has an integrated torque machine including a torque machine stator and a torque machine rotor. The torque machine rotor includes at least one set of rotor magnets. An integrated rotational position sensor is configured to monitor rotational position of the torque machine rotor in relation to the torque machine stator. The integrated rotational position sensor includes a sensor rotor element and a sensor stator element. The sensor rotor element includes at least one set of sensor rotor magnets. The sensor rotor element is positioned such that the at least one set of sensor rotor magnets are aligned with respect to a rotor pole of the at least one set of rotor magnets of the torque machine rotor. The sensor stator element is positioned such that the sensor stator element is aligned with a magnetic axis of the torque machine stator.
Abstract:
A core structure for an electromagnetic actuator includes an electrically conductive magnetic core component having a magnetic axis, an outer surface between axially opposite ends and at least one slit arranged between said axially opposite ends through the outer surface.
Abstract:
A method for providing consistent actuator events for each of a plurality of consecutive actuator events of an electromagnetic actuator, includes applying a first bi-directional current waveform for a first actuator event and applying a second bi-directional current waveform for a second actuator event immediately subsequent to the first actuator event. The first bi-directional current waveform includes applying current in a first direction when the actuator is commanded to an actuated position and applying current in a reversed second direction when the actuator is commanded to a rest position. The second bi-directional current waveform includes applying current in the reversed second direction when the actuator is commanded to an actuated position and applying current in the first direction when the actuator is commanded to a rest position.
Abstract:
An electromagnetic actuator includes an electrical coil and a high permeability magnetic flux path. The magnetic flux path includes a magnetic core, an armature and a flux return structure. The electromagnetic actuator further includes a flux sensor which is integrated within the actuator and is configured to detect a magnetic flux within the high permeability magnetic flux path.
Abstract:
A method for parameter estimation in an electromagnetic actuator having a main coil and a search coil includes driving a current through the main coil, determining a main coil voltage, determining a search coil voltage, determining a main coil current, and estimating at least one parameter of the actuator based on the main coil voltage, the search coil voltage and the main coil current.
Abstract:
An electromagnetic actuation system includes an electrical coil, a magnetic core, an armature, a controllable bi-directional drive circuit for selectively driving current through the coil in either of two directions, and a control module providing an actuator command to the drive circuit. Current is driven though the electrical coil in a first direction when an actuation is desired. When the actuation is not desired current is driven through the electrical coil including in a second direction sufficient to reduce residual flux within the actuator below a level passively attained within the actuator at zero coil current.
Abstract:
A system for controlling actuation of an electromagnetic actuator includes an actuator having an electrical coil, a magnetic core, and an armature. A controllable drive circuit is responsive to an electric power flow signal for driving current through the electrical coil to actuate the armature. A control module includes an armature motion observer configured to determine an armature motion parameter in the actuator based upon a magnetic flux within the actuator and a predetermined mechanical equation of motion corresponding to the actuator and adapt the electric power flow signal based on the armature motion parameter.
Abstract:
An electromagnetic actuation system includes an actuator having an electrical coil, a magnetic core, and an armature. The system further includes a controllable bi-directional drive circuit for selectively driving current through the electrical coil in either of two directions. The control module provides an actuator command to the drive circuit effective to drive current through the electrical coil in a first direction to actuate the armature and in a second direction subsequent to armature actuation to oppose residual flux within the actuator. The control module includes a feed forward control module configured to adapt the actuator command to converge residual flux within the actuator to a preferred flux level.