Abstract:
A system according to the principles of the present disclosure includes a transmission fluid temperature sensor and a coolant valve control module. The transmission fluid temperature sensor measures a temperature of transmission fluid that is circulated through a transmission. The coolant valve control module controls at least one coolant valve to adjust coolant flow from an engine to a transmission fluid heat exchanger and at least one of a radiator, an engine oil heat exchanger, and a heater core. When the transmission fluid temperature is less than a first temperature, the coolant valve control module controls the at least one coolant valve to allow coolant flow from the engine to the transmission fluid heat exchanger and prevent coolant flow from the engine to the at least one of the radiator, the engine oil heat exchanger, and the heater core.
Abstract:
A system includes a coolant pump and a first rotary valve. The coolant pump is configured to be mechanically driven by an engine and to send coolant to an inlet of the engine. The first rotary valve is configured to receive coolant from an outlet of the engine and to send coolant to a first radiator and a heater core. The first rotary valve is adjustable to a zero flow position to prevent coolant flow to the first radiator and the heater core and thereby increase a rate at which the engine warms coolant flowing therethrough.
Abstract:
A vapor purge system for an engine, includes a purge valve having a housing including an input port in communication with a purge canister and including an output port in communication with an intake system component defining a first bore portion receiving the output port with a first seal member disposed therebetween. The intake system component includes a second bore portion receiving a housing portion of the purge valve with a second seal member disposed therebetween. The first and second seal members are spaced such that when the housing is pulled away from the intake system component and the first seal member is out of engagement between the first bore and the output port, the second seal member can remain in engagement so that a diagnostic module can diagnose detachment of the purge valve from the intake system before any hydrocarbon vapor can be released into the atmosphere.
Abstract:
A system including startup, load, flow, and peak estimation modules. The startup module, during a startup period or in response to a startup of the engine, receives a temperature signal and generates a first condition signal. The load module determines a load on the engine and generates a second condition signal. The flow module, if the first condition signal indicates a temperature of the engine is less than a first predetermined temperature and if the second condition signal indicates the load is less than a predetermined threshold, operates a pump to circulate coolant during the startup period. The peak estimation module estimates a temperature of a hottest metal location on the engine. The flow module increases a speed of the pump if the temperature of the hottest metal location is greater than a second predetermined temperature or the load is greater than or equal to the predetermined threshold.
Abstract:
A system according to the principles of the present disclosure includes an engine start module and an exhaust valve control module. The engine start module determines when an engine is started based on at least one of an input from an ignition system and the speed of the engine. The exhaust valve control module selectively fully closes an exhaust valve in an exhaust system of the engine when the engine is started to trap exhaust gas in the exhaust system.