Abstract:
A method of prompting an operator of an electric vehicle for pre-conditioning the electric vehicle comprises monitoring a location of the electric vehicle, monitoring the temperature of an electric propulsion system within the electric vehicle, accessing historical data of driving patterns for the electric vehicle, monitoring the location of the operator of the electric vehicle, identifying a condition that indicates imminent usage of the electric vehicle based on the location of the vehicle, the location of the operator of the electric vehicle, and the historical data of driving patterns for the electric vehicle, comparing the temperature of the electric propulsion system of the electric vehicle to a pre-determined preferred operating temperature, and sending a prompt to the operator of the electric vehicle suggesting that pre-conditioning of the electric vehicle may be appropriate.
Abstract:
A method is applied to regenerate particulate matter in a particulate filter of a hybrid electric vehicle having a combination of a combustion engine and an electric motor for propelling the vehicle, the hybrid electric vehicle having an electrically heated catalyst disposed in flow communication with the particulate filter in an exhaust system of the vehicle. The method determines whether the combustion engine is or is not combusting fuel, and under a condition where the combustion engine is not combusting fuel, the catalyst is electrically heated until it has reached a temperature suitable to cause ignition of the particulate matter. The electric motor is used to facilitate rotation of the combustion engine at a rotational speed suitable to draw air into and be exhausted out of the combustion engine into the exhaust system, across the catalyst, and into the particulate filter to facilitate ignition of the particulate in the filter.
Abstract:
A method of controlling a powertrain system includes determining a torque request; selecting feasible input torque and input speed operating points; calculating aggregate system power losses; determining turbo efficiency as a function of a difference between a feasible input torque rate of change and a desired input torque rate of change required to reach the desired output torque; summing the turbo efficiency to the aggregate system power losses to determine total system losses corresponding to feasible input torques and input speed capable of producing the desired output torque; determining a feasible input torque and input speed corresponding to a substantially minimum total system power loss; and selecting as a desired input speed and input torque that corresponds to the substantially minimum total system power loss.
Abstract:
A plug-in hybrid vehicle includes a hybrid powertrain system and an energy storage device. A method for operating the hybrid powertrain system includes initially operating the hybrid powertrain system in a charge-depletion mode to reduce a state-of-charge (SOC) of an energy storage device. In response to an operator request, the hybrid powertrain system operates in an opportunity charging mode to opportunistically charge the energy storage device to increase the SOC of the energy storage device during a trip prior to achieving a minimum SOC that is associated with triggering operation in a charge sustaining mode.
Abstract:
A method is applied to regenerate particulate matter in a particulate filter of a hybrid electric vehicle having a combination of a combustion engine and an electric motor for propelling the vehicle, the hybrid electric vehicle having an electrically heated catalyst disposed in flow communication with the particulate filter in an exhaust system of the vehicle. The method determines whether the combustion engine is or is not combusting fuel, and under a condition where the combustion engine is not combusting fuel, the catalyst is electrically heated until it has reached a temperature suitable to cause ignition of the particulate matter. The electric motor is used to facilitate rotation of the combustion engine at a rotational speed suitable to draw air into and be exhausted out of the combustion engine into the exhaust system, across the catalyst, and into the particulate filter to facilitate ignition of the particulate in the filter.