Abstract:
A plug-in hybrid vehicle includes a hybrid powertrain system and an energy storage device. A method for operating the hybrid powertrain system includes initially operating the hybrid powertrain system in a charge-depletion mode to reduce a state-of-charge (SOC) of an energy storage device. In response to an operator request, the hybrid powertrain system operates in an opportunity charging mode to opportunistically charge the energy storage device to increase the SOC of the energy storage device during a trip prior to achieving a minimum SOC that is associated with triggering operation in a charge sustaining mode.
Abstract:
A torque system includes a DC power device, a polyphase electric machine, a contactor pair, a power inverter module (PIM), and a controller. The PIM connects to the power device via the contactor pair and directly connects to the electric machine. The controller executes a method to control a fault response under a fault condition resulting in opening of the contactor pair and a polyphase short condition. The controller calculates a back EMF of the electric machine and transmits switching control signals to semiconductor switches of the PIM to transition from the polyphase short condition to a polyphase open condition only when the calculated back EMF is less than a calibrated value and a voltage rise on a DC side of the PIM is less than a calibrated voltage rise. A vehicle includes the DC power device, road wheels, electric machine, PIM, and controller.
Abstract:
A method of controlling a powertrain system includes determining a torque request; selecting feasible input torque and input speed operating points; calculating aggregate system power losses; determining turbo efficiency as a function of a difference between a feasible input torque rate of change and a desired input torque rate of change required to reach the desired output torque; summing the turbo efficiency to the aggregate system power losses to determine total system losses corresponding to feasible input torques and input speed capable of producing the desired output torque; determining a feasible input torque and input speed corresponding to a substantially minimum total system power loss; and selecting as a desired input speed and input torque that corresponds to the substantially minimum total system power loss.
Abstract:
A torque system includes a DC power device, a polyphase electric machine, a contactor pair, a power inverter module (PIM), and a controller. The PIM connects to the power device via the contactor pair and directly connects to the electric machine. The controller executes a method to control a fault response under a fault condition resulting in opening of the contactor pair and a polyphase short condition. The controller calculates a back EMF of the electric machine and transmits switching control signals to semiconductor switches of the PIM to transition from the polyphase short condition to a polyphase open condition only when the calculated back EMF is less than a calibrated value and a voltage rise on a DC side of the PIM is less than a calibrated voltage rise. A vehicle includes the DC power device, road wheels, electric machine, PIM, and controller.