Abstract:
An apparatus can include a support portion of a connector and at least a portion of wire component coupled to a first side of the support portion. The apparatus can include a protrusion portion have a distal portion, a proximal portion, and an opening disposed between the distal portion and the proximal portion. The proximal portion can be coupled to a second side of the support portion, and the protrusion portion can have a width tapering from the proximal portion to the distal portion. A contact can be disposed in the protrusion portion and can have a surface exposed to an ambient environment through the opening.
Abstract:
An electrical receptacle may include a first row of electrical contacts extending along a side of the receptacle a first distance from an opening of the electrical receptacle and a second row of electrical contacts extending along the side of the receptacle a second distance from the opening of the electrical receptacle. The first row of electrical contacts may include a first receptacle differential signaling pair closer to a center of the first row of electrical contacts than a second receptacle differential signaling pair in the first row of electrical contacts. The second row of electrical contacts may include a third receptacle differential signaling pair closer to a center of the second row of electrical contacts than remaining contacts in the second row of electrical contacts.
Abstract:
An electrical connector may include a cord comprising wires and a plug extending from the cord. The plug may include a first top row of contacts included in a top portion of the plug and a first bottom row of contacts included in a bottom portion of the plug. The first top row of contacts may be coupled to the plurality of wires and include a first top differential signaling pair configured to carry signals according to a first communication protocol, and a second top differential signaling pair configured to carry signals according to a second communication protocol. The first bottom row of contacts may be coupled to the first top row of contacts and arranged to maintain a same arrangement of contacts and electrical paths as the first top row of contacts to the plurality of wires when the plug is rotated one hundred and eighty degrees.
Abstract:
Trackpad apparatus and computing devices including trackpad apparatus are disclosed. In an example implementation, a trackpad apparatus includes a capacitive touch-sensing pattern disposed on a top surface of the trackpad apparatus and a capacitive pressure-sensing pattern disposed below the capacitive touch-sensing pattern. The trackpad apparatus also includes at least one controller. The at least one controller and the capacitive touch-sensing pattern are collectively configured to detect location-specific reductions in charge coupling in the capacitive touch-sensing pattern resulting from charge being shunted out of the capacitive touch-sensing pattern by one or more electrically conductive objects being placed in electrical contact with the top surface of the trackpad apparatus. In the example trackpad apparatus, the at least one controller and the capacitive pressure-sensing pattern are collectively configured to detect location-specific changes in charge coupling in the capacitive pressure-sensing pattern resulting from pressure being applied to the top surface of the trackpad apparatus.
Abstract:
An apparatus may include a conductive wire and a plug. The plug may be electrically and mechanically coupled to the conductive wire. The plug may include a non-conductive overmold, an electrically conductive barrel, and a lip. The non-conductive overmold may surround the conductive wire. The electrically conductive barrel may extend from the overmold, and may have a width that is smaller than a width of the overmold. The lip may extend from the barrel in a direction substantially perpendicular to a direction in which the barrel extends from the overmold. A distance from an outer portion of the lip to an opposite outer portion of the lip may be at least twice a length that the barrel extends from the overmold.
Abstract:
An electrical connector may include a cord comprising wires and a plug extending from the cord. The plug may include a first top row of contacts included in a top portion of the plug and a first bottom row of contacts included in a bottom portion of the plug. The first top row of contacts may be coupled to the plurality of wires and include a first top differential signaling pair configured to carry signals according to a first communication protocol, and a second top differential signaling pair configured to carry signals according to a second communication protocol. The first bottom row of contacts may be coupled to the first top row of contacts and arranged to maintain a same arrangement of contacts and electrical paths the first top row of contacts to the plurality of wires when the plug is rotated one hundred and eighty degrees.
Abstract:
According to an example embodiment, an electrical connector may include an electrical cord comprising a plurality of wires, and a plug connected to the electrical cord. The plug may include electrical contacts coupled to the plurality of electrical wires, and at least one latch. The at least one latch may be biased to extend away from the plug, an end surface of the at least one latch being within two tenths of a millimeter of an end surface of the plug opposite from the electrical cord.
Abstract:
A wearable device is disclosed that, while being worn by a user, may allow a user to authenticate to a second device such as a smartphone without having to enter an unlock code such as a personal identification number. The wearable device may detect when the user removes it. Removal of the wearable device may cause it to be disabled and prevent it from being used to authenticate a subsequent user to the second device until it is re-enabled.
Abstract:
A device is disclosed as including a hinge disposed intermediate of a display and a keyboard. the hinge includes an at least partially cylindrical housing and a friction band, the hinge providing rotation of the display and the keyboard around a pivot axis extending longitudinally along the hinge. The friction band comprises one or more compression members configured to extend around the pivot axis and in a compressed configuration with an inner surface of the housing to create friction between the inner surface of the housing and an outer surface of the one or more compression members.
Abstract:
An apparatus may include a conductive wire and a plug. The plug may be electrically and mechanically coupled to the conductive wire. The plug may include a non-conductive overmold, an electrically conductive barrel, and a lip. The non-conductive overmold may surround the conductive wire. The electrically conductive barrel may extend from the overmold, and may have a width that is smaller than a width of the overmold. The lip may extend from the barrel in a direction substantially perpendicular to a direction in which the barrel extends from the overmold. A distance from an outer portion of the lip to an opposite outer portion of the lip may be at least twice a length that the barrel extends from the overmold.