Abstract:
This application discloses a lighting emitting diode (LED) illumination system that operates at least in a boost mode and a bypass mode. The LED illumination system includes a plurality of LEDs and bypass elements. Each bypass element is coupled in parallel with one or more LEDs, and configured to bypass them selectively in the bypass mode. A boost converter is configured to drive the LEDs. The boost converter includes a boost controller that is configured to enable the boost mode in response to a boost enable signal. In the boost mode, the boost controller is electrically coupled to control the boost converter to drive the LEDs by a boosted drive voltage, and in the bypass mode, the boost controller is deactivated to allow the boost converter to drive a subset of the LEDs by a regular drive voltage that is substantially lower than the boosted drive voltage.
Abstract:
Systems and methods for driving optical sources operating at different wavelengths within a smoke sensor are described herein. Multiple optical sources such as light emitting diodes may be used in a photoelectric smoke sensor to detect particles of different sizes. Photoelectric smoke sensors can operate by pulsing the LEDs and measuring a response in a light sensor. The signal measured at the light sensor changes based on the quantity of particles existing in a smoke chamber. Each optical source may have different operational characteristics and thus require different drive currents to operate. LED driving circuitry according to embodiments discussed herein provide a consistent and reliable drive current to each optical source, while maximizing efficiency of power consumption across a range of possible voltages provided by different power sources.
Abstract:
Systems and methods for interfacing a hazard detection device with a control panel system via a dongle are provided. The dongle may be configured to alternate between drawing first and second amounts of power from the control panel system in response to the hazard detection device alternating between operating in a normal mode when no hazard is detected and an alarm mode when a hazard is detected. The hazard detection device may operate independently of any characteristics of the control panel system. For example, the hazard detection device may operate without drawing any power from the control panel system. Therefore, the dongle may allow for various types of hazard detection devices to interface with a common two-line power control system.
Abstract:
Hazard detection systems according to embodiments described herein are operative to provide failsafe safety detection features and user interface features using circuit topology and power budgeting methods that minimize power consumption. The safety detection features can monitor environmental conditions (e.g., smoke, heat, humidity, carbon monoxide, carbon dioxide, radon, and other noxious gasses) in the vicinity of the hazard detection system associated and alarm occupants when an environmental condition exceeds a predetermined threshold.
Abstract:
Hazard detection systems according to embodiments described herein are operative to provide failsafe safety detection features and user interface features using circuit topology and power budgeting methods that minimize power consumption. The safety detection features can monitor environmental conditions (e.g., smoke, heat, humidity, carbon monoxide, carbon dioxide, radon, and other noxious gasses) in the vicinity of the hazard detection system associated and alarm occupants when an environmental condition exceeds a predetermined threshold.
Abstract:
Hazard detection systems according to embodiments described herein are operative to provide failsafe safety detection features and user interface features using circuit topology and power budgeting methods that minimize power consumption. The safety detection features can monitor environmental conditions (e.g., smoke, heat, humidity, carbon monoxide, carbon dioxide, radon, and other noxious gasses) in the vicinity of the hazard detection system associated and alarm occupants when an environmental condition exceeds a predetermined threshold.
Abstract:
Hazard detection systems according to embodiments described herein are operative to provide failsafe safety detection features and user interface features using circuit topology and power budgeting methods that minimize power consumption. The safety detection features can monitor environmental conditions (e.g., smoke, heat, humidity, carbon monoxide, carbon dioxide, radon, and other noxious gasses) in the vicinity of the hazard detection system associated and alarm occupants when an environmental condition exceeds a predetermined threshold.
Abstract:
This application discloses a lighting emitting diode (LED) illumination system that operates at least in a boost mode and a bypass mode. The LED illumination system includes a plurality of LEDs and bypass elements. Each bypass element is coupled in parallel with one or more LEDs, and configured to bypass them selectively in the bypass mode. A boost converter is configured to drive the LEDs. The boost converter includes a boost controller that is configured to enable the boost mode in response to a boost enable signal. In the boost mode, the boost controller is electrically coupled to control the boost converter to drive the LEDs by a boosted drive voltage, and in the bypass mode, the boost controller is deactivated to allow the boost converter to drive a subset of the LEDs by a regular drive voltage that is substantially lower than the boosted drive voltage.
Abstract:
Systems and methods for driving optical sources operating at different wavelengths within a smoke sensor are described herein. Multiple optical sources such as light emitting diodes may be used in a photoelectric smoke sensor to detect particles of different sizes. Photoelectric smoke sensors can operate by pulsing the LEDs and measuring a response in a light sensor. The signal measured at the light sensor changes based on the quantity of particles existing in a smoke chamber. Each optical source may have different operational characteristics and thus require different drive currents to operate. LED driving circuitry according to embodiments discussed herein provide a consistent and reliable drive current to each optical source, while maximizing efficiency of power consumption across a range of possible voltages provided by different power sources.
Abstract:
Hazard detection systems according to embodiments described herein are operative to provide failsafe safety detection features and user interface features using circuit topology and power budgeting methods that minimize power consumption. The safety detection features can monitor environmental conditions (e.g., smoke, heat, humidity, carbon monoxide, carbon dioxide, radon, and other noxious gasses) in the vicinity of the hazard detection system associated and alarm occupants when an environmental condition exceeds a predetermined threshold.