Abstract:
Provided are a highly thermostable rare-earth permanent magnetic material, a preparation method thereof and a magnet containing the same. A composition of the rare-earth permanent magnetic material by an atomic percentage is as follows: SMxRaFe100-x-y-z-aMyNz, wherein R is at least one of Zr and Hf, M is at least one of Co, Ti, Nb, Cr, V, Mo, Si, Ga, Ni, Mn and Al, x+a is 7-10%, a is 0-1.5%, y is 0-5% and z is 10-14%.
Abstract:
The application discloses a rare-earth permanent magnetic powder, a bonded magnet, and a device using the bonded magnet. The rare-earth permanent magnetic powder comprises 4 to 12 at. % of Nd, 0.1 to 2 at. % of C, 10 to 25 at. % of N and 62.2 to 85.9 at. % of T, wherein T is Fe or FeCo and the main phase of the rare-earth permanent magnetic powder is a hard magnetic phase with a TbCu7 structure. Material volatilization can be avoided effectively during a preparation process of the rare earth permanent magnetic powder, thus improving the wettability with a water-cooling roller during the preparation process and final prepared materials are provided with good magnetic properties.
Abstract:
The present disclosure discloses an yttrium (Y)-added rare-earth permanent magnetic material and a preparation method thereof. A chemical formula of the material expressed in atomic percentage is (YxRE1-x)aFebalMbNc, wherein 0.05≤x≤0.4, 7≤a≤13, 0≤b≤3, 5≤c≤20, and the balance is Fe, namely, bal=100-a-b-c; RE represents a rare-earth element Sm, or a combination of the rare-earth element Sm and any one or more elements of Zr, Nd and Pr; M represents Co and/or Nb; and N represents nitrogen. In the preparation method, the rare-earth element Y is utilized to replace the element Sm of a samarium-iron-nitrogen material. By regulating a ratio of the element Sm to the element Y, viscosity of an alloy liquid can be reduced, and an amorphous forming ability of the material is enhanced.
Abstract:
The present invention discloses rare earth-bonded magnetic powder and a preparation method therefor. The bonded magnetic powder is of a multilayer core-shell structure, and comprises a core layer and an antioxidant layer (3), wherein the core layer is formed by RFeMB, R is Nd and/or PrNd, and M is one or more of Co, Nb, and Zr; and the core layer is coated with an iron-nitrogen layer (2). In addition, the present invention also discloses the preparation method for the rare earth-bonded magnetic powder and a bonded magnet. The oxidation and corrosion of magnetic raw powder during phosphorization and subsequent treatment process are effectively prevented, thereby further improving the long-term temperature resistance and environmental tolerance of the material.
Abstract:
Provided are a highly thermostable rare-earth permanent magnetic material, a preparation method thereof and a magnet containing the same. A composition of the rare-earth permanent magnetic material by an atomic percentage is as follows: SmxRaFe100-x-y-z-aMyNz, wherein R is at least one of Zr and Hf, M is at least one of Co, Ti, Nb, Cr, V, Mo, Si, Ga, Ni, Mn and Al, x+a is 7-10%, a is 0-1.5%, y is 0-5% and z is 10-14%.
Abstract:
An alloy material, a bonded magnet, and a modification method of a rare-earth permanent magnetic powder are provided by the present application. A melting point of the alloy material is lower than 600° C. and a composition of the alloy material by an atomic part is RE100-x-yMxNy, wherein RE is one or more of non-heavy rare-earth Nd, Pr, Sm, La and Ce, M is one or more of Cu, Al, Zn and Mg, N is one or more of Ga, In and Sn, x=10-35 and y=1-15.
Abstract:
An alloy material, a bonded magnet, and a modification method of a rare-earth permanent magnetic powder are provided by the present application. A melting point of the alloy material is lower than 600° C. and a composition of the alloy material by an atomic part is RE100-x-yMxNy, wherein RE is one or more of non-heavy rare-earth Nd, Pr, Sm, La and Ce, M is one or more of Cu, Al, Zn and Mg, N is one or more of Ga, In and Sn, x=10-35 and y=1-15.