摘要:
A thermal detection system (100, 200) includes a focal plane array (102, 202), a thermal isolation structure (104, 204) and an integrated circuit substrate (106, 206). The focal plane array (102, 202) includes thermal sensors (114, 214) formed from a pyroelectric element (116, 216), such as barium strontium titanate (BST). One side of the pyroelectric element (116, 216) is coupled to a contact pad (110, 210) disposed on the integrated circuit substrate (106, 206) through a mesa strip conductor (112, 212) of the thermal isolation structure (104, 204). The other side of the pyroelectric element (116, 216) is coupled to a common electrode (120, 220). In one embodiment, slots (128) are formed in the common electrode (120) intermediate the thermal sensors (114) to improve inter-pixel thermal isolation. In another embodiment, slots (236) are formed in the optical coating (224) to improve inter-pixel thermal isolation. The common electrode (120, 220) may be formed from a thermally insulating material, such as a silicon monoxide and chromium matrix (cermet) or other metal oxide.
摘要:
A thermal detection system (10) includes a focal plane array (12), a thermal isolation structure (14), and an integrated circuit substrate (16). Focal plane array (12) includes thermal sensors (28), each having an associated thermal sensitive element (30). Thermal sensitive element (30) is coupled with one side to infrared absorber and common electrode assembly (36) and on the opposite side to an associated contact pad (20) disposed on the integrated circuit substrate (16). Reticulation kerfs (52a, 52b) separate adjacent thermal sensitive elements (30a, 30b, 30c) by a distance at least half the average width (44, 46) of a single thermal sensitive element (30a, 30b, 30c). A continuous, non-reticulated optical coating (38) may be disposed over thermal sensitive elements (30a, 30b, 30c) to maximize absorption of thermal radiation incident to focal plane array (12).
摘要:
A thermal detection system (10) includes a focal plane array (12), a thermal isolation structure (14), and an integrated circuit substrate (16). Focal plane array (12) includes thermal sensors (28), each having an associated thermal sensitive element (30). Thermal sensitive element (30) is coupled with one side to infrared absorber and common electrode assembly (36) and on the opposite side to an associated contact pad (20) disposed on the integrated circuit substrate (16). Reticulation kerfs (52a, 52b) separate adjacent thermal sensitive elements (30a, 30b, 30c) by a distance at least half the average width (44, 46) of a single thermal sensitive element (30a, 30b, 30c). A continuous, non-reticulated optical coating (38) may be disposed over thermal sensitive elements (30a, 30b, 30c) to maximize absorption of thermal radiation incident to focal plane array (12).
摘要:
A thermal isolation structure (10) is disposed between a focal plane array and an integrated circuit substrate (12). The thermal isolation structure (10) includes a mesa-type formation (16) and a mesa strip conductor (18, 26) extending from the top of the mesa-type formation (16) to an associated contact pad (14) on the integrated circuit substrate (12). After formation of the mesa-type formation (16) and the mesa strip conductor (18, 26), an anisotropic etch using the mesa strip conductor (18, 26) as an etch mask removes excess mesa material to form trimmed mesa-type formation (24) for improved thermal isolation. Bump bonding material (20) may be deposited on mesa strip conductor (18, 26) and can also be used as an etch mask during the anisotropic etch. Thermal isolation structure (100) can include mesa-type formations (102), each with a centrally located via (110) extending vertically to an associated contact pad (104) of integrated circuit substrate (106). A conductor (108) is deposited on top of mesa-type formation (102), along the walls of via (110), and overlaying contact pad (104). An anistropic etch using the conductor (108) as an etch mask removes excess mesa material (118) for improved thermal isolation.
摘要:
A thermal isolation structure (10) is disposed between a focal plane array and an integrated circuit substrate (12). The thermal isolation structure (10) includes a mesa-type formation (16) and a mesa strip conductor (18, 26) extending from the top of the mesa-type formation (16) to an associated contact pad (14) on the integrated circuit substrate (12). After formation of the mesa-type formation (16) and the mesa strip conductor (18, 26), an anisotropic etch using the mesa strip conductor (18, 26) as an etch mask removes excess mesa material to form trimmed mesa-type formation (24) for improved thermal isolation. Bump bonding material (20) may be deposited on mesa strip conductor (18, 26) and can also be used as an etch mask during the anisotropic etch. Thermal isolation structure (100) can include mesa-type formations (102), each with a centrally located via (110) extending vertically to an associated contact pad (104) of integrated circuit substrate (106). A conductor (108) is deposited on top of mesa-type formation (102), along the walls of via (110), and overlying contact pad (104). An anisotropic etch using the conductor (108) as an etch mask removes excess mesa material (118) for improved thermal isolation.
摘要:
A hybrid thermal detector and method for producing same where the optical coating 32 of the hybrid thermal detector has elongated parallel thermal isolation stots 62 along one axis. The elongated parallel slots 62 improve the acuity, or MTF of the resultant image produced by the detector along one axis. The optical coating 32 may be corrugated, or elevated, in order to add structural support and allow mechanical compliance along the axis of the slots.
摘要:
In an exemplary thermal imaging system (20, 120, 220 and 320), a thermal isolation structure (50 and 150) is disposed on an integrated circuit substrate (70 and 170) for electrically connecting and mechanically bonding a corresponding focal plane array (30, 130, and 230) of thermal sensors (40, 140, and 240). Each mesa-type structure (52, 54 and 152) includes at least one mesa conductor (56, 58, 156 and 158) that extends from the top of the mesa-type structure (52, 54 and 152) to an adjacent contact pad (72 and 74). The mesa conductors (56, 58, 156 and 158) provide both biasing voltage (V.sub.B) for the respective thermal sensor (40 and 240) and a signal flowpath (V.sub.s) for the respective thermal sensor (40 and 240). The mesa conductors (56, 58, 156 and 158) may be used to provide biasing voltage (V.sub.B) to either a single ferroelectric element (242 and 243) having a void space (277 and 279) or a pair of ferroelectric elements (42 and 44). When the focal plane array (30, 130 and 230) is bonded to the corresponding array of mesa-type structures (52, 54 and 152), a thermally isolated, but electrically conductive path is provided between electrodes (43 and 45) of the thermal sensor (40 and 240) and the corresponding contact pad (72 and 172) of the integrated circuit substrate (70 and 74).
摘要:
In an exemplary thermal imaging system (20, 120, 220 and 320), a thermal isolation structure (50 and 150) is disposed on an integrated circuit substrate (70 and 170) for electrically connecting and mechanically bonding a focal plane array (30 and 230) of thermal sensors (40 and 240). Each mesa-type structure (52, 54 and 152) includes at least one mesa conductor (56, 58, 156 and 158) that extends from the top of the mesa-type structure (52, 54 and 152) to an adjacent contact pad (72 and 74). The mesa conductors (56, 58, 156 and 158) provide both biasing voltage (V.sub.B) for the respective thermal sensor (40 and 240) and a signal flow path (V.sub.S) for the respective thermal sensor (40 and 240). The mesa conductors (56, 56, 156 and 158) may be used to provide biasing voltage (V.sub.B) to either a single ferroelectric element (242) or a pair of ferroelectric elements (42 and 44). When the focal plane array (30 and 230) is bonded to the corresponding array of mesa-type structures (52, 54 and 152), a thermally isolated, but electrically conductive path is provided between electrodes (43 and 45) of the thermal sensor (40 and 240) and the corresponding contact pad (72 and 172) of the integrated circuit substrate (70 and 74).
摘要:
A thermal sensor (36, 84, 114) comprising a thermal assembly (44, 88, 118) and a signal flowpath (46, 90, 120). The thermal assembly (44, 88, 118) may comprise a thermally sensitive element (50) and a pair of electrodes (52, 54). The thermally sensitive element (50) may generate a signal representative of an amount of thermal radiation incident to the thermally sensitive element (50). The electrodes (52, 54) may collect the signal generated by the thermally sensitive element (50). The signal flowpath (46, 90, 120) may transmit the signal collected by the electrodes (52, 54) to the substrate (34, 82, 112). The signal flowpath (46, 90, 120) may comprise a pair of arms (56, 58, 92, 122) each extending from an electrode (52, 54) and be connected to the substrate (34, 82, 112). The arms (56, 58, 92, 122) may support the thermal assembly (44, 88, 118) in spaced relation with the substrate (34, 82, 112). The arms (56, 58, 92, 122) may be formed of a thermally insulating material.
摘要:
A thermal imaging system (10) for providing an image representative of an amount of thermal radiation incident to the system is provided. The system (10) includes a thermal detector (28 or 30) made from a layer of temperature sensitive material forming a first element of a signal-producing circuit (54). The first element (28 or 30) has either a resistance or capacitance value depending on its temperature. The system (10) also includes an integrated circuit substrate (32) having a second element (56 or 58) of the signal-producing circuit (54) complementary and electrically coupled to the first element (28 or 30). The signal-producing circuit (54) may produce an output signal having a amplitude. The amplitude of the output signal is monitored as representing an absolute temperature of the detector (28 or 30) so as to determine the amount of thermal energy incident to the system (10).