摘要:
An array of thermal sensitive elements (16) may be formed from a pyroelectric substrate (46) having an infrared absorber and common electrode assembly (18) attached thereto. A first layer of electrically conductive contacts (60) is formed to define in part masked (61) and unmasked (68) regions of the substrate (46). A second layer of electrically conductive contacts (62) may be formed on the first layer of contacts (60). A mask layer (66) is formed to encapsulate the exposed portions of the second layer of contacts (62). The unmasked regions (68) are exposed to an etchant (70) and irradiated to substantially increase the reactivity between the unmasked regions (68) and the etchant (70) such that during irradiation, the etchant (70) removes the unmasked regions (68) substantially faster than the first layer of contacts (60) and the mask layer (66).
摘要:
This is a system and method of forming an electrical contact to the optical coating of an infrared detector. The method may comprise: forming thermal isolation trenches 22 and contact vias 23 in a substrate 20; depositing a bias contact metal 32 into the vias 23 forming biasing contact areas around a periphery of the substrate 20; depositing a first trench filler 24 in the trenches 22 and vias 23; replanarizing; depositing a common electrode layer 25 over the thermal isolation trenches and the biasing contact areas; mechanically thinning the substrate 20 to expose the biasing contact area 32 and the trench filler 24; depositing a contact metal 34 on the backside of the substrate 20, the exposed trench filler 24 and the exposed bias contact area; and etching the contact metal 34 and the trench filler 24 to form pixel mesas of the contact metal 34 and the substrate 20. The thermal isolation trenches 22 and the bias contact vias 23 may be formed by ion milling or laser vaporization. Alternately, the bias contact areas 23 may be formed by performing laser vaporization on the substrate 20 to produce conductive 23 areas within the substrate.
摘要:
A retractable probe system (12) senses in situ a plurality of predetermined process parameters of a wafer (24) fabrication environment (16) and includes a sensing device (47) for sensing the predetermined process parameters, a probe arm (46) for holding sensing device (47) and having sufficient length to extend sensing device (47) into a predetermined location of the fabrication environment (16). A housing (36) receives the sensing device (47) and probe arm (46). A locator mechanism (52, 42, and 44) controllably locates sensing device 47) and probe arm (46) within fabrication environment (16) and within housing (36). An isolator mechanism (34) isolates sensing device (47) and probe arm (46) within housing (36) and essentially out of gases communication with fabrication environment (16). Cleaning mechanism (54) cleanses sensing device (47) within housing (36) and permits sensing device (47) to be immediately thereafter located in fabrication environment (16).
摘要:
This is a system and method of forming an electrical contact to the optical coating of an infrared detector. The method may comprise: forming thermal isolation trenches 22 in a substrate 20; depositing a trench filler 24 in the thermal isolation trenches 22; depositing a common electrode layer 31 over the thermal isolation trenches 22; depositing an optical coating 26 above the common electrode layer 31; mechanically thinning the substrate to expose the trench filler 24; etching to remove the trench filler 24 in the bias contact area; depositing a contact metal 34 on the backside of the substrate 20, wherein the contact metal 34 connects to the common electrode layer 31 at bias contact areas 34 around a periphery of the thermal isolation trenches; and etching the contact metal 34 and the trench filler 24 to form pixel mesas of the contact metal 34 and the substrate 20. Bias contact vias 23 may be formed in the bias contact areas and then filled with bias contact metal 49. Alternately, the bias contact vias may also be filled with the contact metal 34. The thermal isolation trenches may be formed by laser vaporization, ion milling or other equivalent methods. In addition, an elevation layer may be formed between the optical coating and the substrate to provide greater tolerances for ion milling. The elevation layer may be filled with a trench filler and then removed after milling. Alternately, the elevation layer may be filled with a metal 49 to connect the bias contact metal to the common electrode in the bias contact areas.
摘要:
A novel reticulated array comprises islands of ceramic (e.g. BST 40) which are fabricated from novel materials using unique methods of patterning. A front side optical coating (e.g. transparent metal layer 44, transparent organic layer 46 and conductive metallic layer 48) is elevated above the substrate between the ceramic islands. This allows additional material (e.g. polyimide 38) between the optical coating and the substrate above the regions where cavities are to be etched. Etching of the cavities (72) is performed from the back side of the substrate without damaging the front side optical coating. Novel fabrication methods also provide for the convenient electrical and mechanical bonding of each of the massive number of ceramic islands to a signal processor substrate (e.g. Si 80) containing a massive array of sensing circuits.
摘要:
An etching process is provided using electromagnetic radiation and a selected etchant (52) to selectively remove various types of materials (53) from a substrate (48). Contacts (49, 56, 64) may be formed to shield the masked regions (51) of the substrate (48) having an attached coating (20) during irradiation of the unmasked regions (53) of the substrate (48). The unmasked regions (53) are then exposed to an etchant (52) and irradiated to substantially increase their reactivity with the etchant (52) such that the etchant (52) etches the unmasked regions (53) substantially faster than the masked regions (51) and the contacts (49, 56, 64).
摘要:
A novel method etching through a substrate (e.g. BST 22) comprises removi A n5 Vthick substrate material from the backside of the substrate to form vias (e.g. cavity 24) all the way to the back surface of a frontside thin film (e.g. optical coating 20). To prevent damage to the frontside thin film while etching from the backside of the supporting substrate, the periphery of each frontside pixel is surrounded by a trench (e.g. etch stop trench 30) much deeper than the thickness of the thin film but also significantly shallower than the thickness of the substrate. This trench is then filled with an etch stop material (e.g. photoresist 32). This etch stop may be partially removed by the backside etching method but provides a tolerant means of recognizing when to stop etching before frontside film damage occurs. After etching the substrate down to and partially through the etch stop, the assembly is removed from the substrate etching medium. The remaining etch stop material may be removed with a specific agent which does not damage the frontside film. For example, if the etch stop is an organic material, such as photoresist, it may be removed from the back with a suitable solvent or dry etch without damaging either the substrate or the frontside thin film.
摘要:
A bonding apparatus (40) having one or more electromagnets (60) is provided for use in coupling a first substrate (20) with flip chip type interconnections (24) to a second substrate (22) having matching flip chip type interconnections (26). The bonding apparatus (40) includes a pedestal assembly (50) which may be used to align and couple the first substrate (20) with the second substrate (22). The bonding apparatus (40) includes an electrical control system (108) with a control unit (130) for varying the amount of electrical power supplied to the electromagnet (60). One or more heater assemblies (110) are provided for temperature cycling of the substrates (20 and 22) during the bonding process. Magnetic force is used to maintain the alignment of the first substrate (20) with the second substrate (22) during temperature cycling.
摘要:
A novel reticulated array comprises islands of ceramic (e.g. BST 40) which are fabricated from novel materials using unique methods of patterning. A shallow etch stop trench (46) is first ion milled around each ceramic island on front side and then filled with an etch stop material (e.g. parylene 48). An optical coat (e.g transparent metal layer 54, transparent organic layer 56 and conductive metallic layer 58) is elevated above the etch stop material by an elevation layer (e.g. polyimide 49). For some applications, it has been experimentally verified that there is no loss, and sometimes a measured increase, in optical efficiency when the optical coating is not planar in topology. Novel fabrication methods also provide for the convenient electrical and mechanical bonding of each of the massive number of ceramic islands to a signal processor substrate (e.g. Si 86) containing a massive array of sensing circuits.
摘要:
An etching process is provided using electromagnetic radiation and a selected etchant (52) to selectively remove various types of materials (53) from a substrate (48). Contacts (49, 56, 64) may be formed to shield the masked regions (51) of the substrate (48) having an attached coating (20) during irradiation of the unmasked regions (53) of the substrate (48). The unmasked regions (53) are then exposed to an etchant (52) and irradiated to substantially increase their reactivity with the etchant (52) such that the etchant (52) etches the unmasked regions (53) substantially faster than the masked regions (51) and the contacts (49, 56, 64).