Abstract:
A system and method is provided that improves the under frequency response of gas turbines by providing a fast-response power augmentation system. The system includes a tank storing a blended mixture of motive fuel such as ethanol or methanol and demineralized water in a predetermined ratio that is provided as a diluent to be injected into the compressor bellmouth, the Compressor Discharge Chamber (CDC), and/or the combustion system via one to three dedicated circuits. To achieve the instantaneous injection of the diluent at the correct pressure and for the appropriate duration to meet the needs of the gas turbine Grid compliance mandate, an accumulator is used as the motive force to drive the augmentation fluid in the dedicated circuits. The injected diluent is microprocessor controlled to either be simultaneous into all three circuits or is sequenced based on a determination of the best turbine control and performance.
Abstract:
A refurbishing method, refurbishing apparatus and refurbished article are provided. The refurbishing method includes accessing a plurality of rotatable components attached to a turbine assembly, the turbine assembly being a portion of a turbomachine, providing a predetermined volume of a buffered electrolytic solution in an electro-polishing tank, coupling the plurality of rotatable components to a power supply, immersing an immersion portion of at least one of the plurality of rotatable components in the buffered electrolytic solution, passing an electrical energy through the immersion portion of at least one of the plurality of rotatable components while the immersion portion is immersed in the buffered electrolytic solution, wherein an electrical flux to the immersion portion electro-polishes the immersion portion, separating the immersion portion from the buffered electrolytic solution, and applying a corrosion inhibitor to the plurality of rotatable components.
Abstract:
A gas turbine wash control system may perform a wash and a rinse of a gas turbine that is offline. An peracetic acid inter-rinse solution may be injected into the gas turbine. The gas turbine may be agitated and the peracetic acid inter-rinse solution drained. A second rinse of the gas turbine may be performed followed by the injection of an anticorrosive solution into the gas turbine.
Abstract:
A method and system for measuring a flow profile in a portion of a flow path in a turbine engine is provided. The system includes a mass flow sensor assembly having a plurality of hot wire mass flow sensors, the mass flow sensor assembly disposed in the portion of the flow path at a location where the flow profile is to be measured. The system also includes a controller that converts signals from the temperature sensor, the pressure sensor and the plurality of hot wire mass flow sensors to flow profile measurements.
Abstract:
Disclosed are methods and systems to determine a power plant machine reliability forecast. In an embodiment, a method may comprise obtaining an environmental factor of a power plant machine based on geospatial data of a first area and location data of a second area, obtaining an operating factor of the power plant machine, and determining a reliability forecast based on the obtained environmental factor and the obtained operating factor.
Abstract:
Disclosed are methods and systems to determine a reliability forecast for a wind turbine. In an embodiment, a method may comprise obtaining an environmental factor of a wind turbine based on geospatial data of a first area and location data of a second area, obtaining an operating factor of the wind turbine, and determining a reliability forecast based on the environmental factor and the operating factor.
Abstract:
Systems and methods for measuring fouling in a gas turbine compressor include a conductivity resistance sensor disposed in a compressor inlet mouth. The degree of compressor fouling is correlated to changes in resistance measured by the conductivity resistance sensor. Measurements of resistance changes are converted to an indicia of fouling and used to trigger cleaning of the compressor.
Abstract:
A system for de-icing a gas turbine engine is provided. A manifold is coupled to an inlet screen. A first conduit is coupled to a stage of the compressor and a first input of a mixing component. A second conduit is coupled to the exhaust and a second input of the mixing component. The second conduit being adapted to extract exhaust gases without increasing the pressure at the exhaust. A third conduit is coupled to the output of the mixing component and the manifold. A method for de-icing a gas turbine engine inlet screen includes determining a current temperature at the inlet screen, and determining a desired temperature at the inlet screen. If the current temperature at the inlet screen is less than the desired temperature at the inlet screen first flow rate of an air-exhaust mixture necessary to achieve the desired inlet screen temperature is calculated. The method also includes extracting an amount of exhaust gas from a turbine exhaust subsystem without increasing a pressure at the turbine exhaust subsystem, extracting an amount of air from a compressor stage, and mixing the amount of exhaust gas with the amount of air to generate an air-exhaust mixture that is conveyed to the inlet screen.
Abstract:
A system and method for supercharging a combined cycle system includes a forced draft fan providing a variable air flow. At least a first portion of the air flow is directed to a compressor and a second portion of the airflow is diverted to a heat recovery steam generator. A control system controls the airflows provided to the compressor and the heat recovery steam generator. The system allows a combined cycle system to be operated at a desired operating state, balancing cycle efficiency and component life, by controlling the flow of air from the forced draft fan to the compressor and the heat recovery steam generator.
Abstract:
A thermal valve is disclosed. The thermal valve may provide one or more flows of cooling fluid to a hot cavity within a cooling circuit of a gas turbine engine. The thermal valve may include a temperature sensitive element and a valve assembly in communication with the temperature sensitive element. The valve assembly may include at least one inlet in fluid communication with at least one cooling fluid source, at least one outlet in fluid communication with the hot cavity, and at least one valve in communication with the temperature sensitive element. The at least one valve may be disposed between the at least one inlet and the at least one outlet. The temperature sensitive element may be configured to move the at least one valve between a closed position and an open position.