Abstract:
A combined cycle power plant (CCPP) is provided. The CCPP includes a gas turbine that has a compressor section, a combustion section, and a turbine section. The CCPP further includes a heat recovery steam generator (HRSG) that has a first economizer. The HRSG receives a flow of exhaust gas from the turbine section. The HRSG further includes a fuel heating system that has a fuel supply line and a high temperature heat exchanger disposed in thermal communication on the fuel supply line. The fuel supply line is fluidly coupled to the combustion section. The high temperature heat exchanger is fluidly coupled to the first economizer such that the high temperature heat exchanger receives water from the first economizer. The CCPP further includes a feedwater pump that is fluidly coupled to the high temperature heat exchanger.
Abstract:
A combined cycle power plant (CCPP) is provided. The CCPP includes a gas turbine that has a compressor section, a combustion section, and a turbine section. The CCPP further includes a heat recovery steam generator (HRSG) that has a first economizer. The HRSG receives a flow of exhaust gas from the turbine section. The HRSG further includes a fuel heating system that has a fuel supply line and a high temperature heat exchanger disposed in thermal communication on the fuel supply line. The fuel supply line is fluidly coupled to the combustion section. The high temperature heat exchanger is fluidly coupled to the first economizer such that the high temperature heat exchanger receives water from the first economizer. The CCPP further includes a feedwater pump that is fluidly coupled to the high temperature heat exchanger.
Abstract:
An airflow control system for a gas turbine system according to an embodiment includes: an airflow generation system for attachment to a rotatable expander shaft of a gas turbine system, downstream of the gas turbine system, for drawing in a flow of ambient air through an air intake section into a mixing area; and an eductor nozzle for attachment to a downstream end of the turbine component for receiving an exhaust gas stream produced by the gas turbine system and for drawing in a flow of ambient air through the air intake section into the mixing area, the exhaust gas stream passing through the eductor nozzle into the mixing area; wherein, in the mixing area, the exhaust gas stream mixes with the flow of ambient air drawn in by the airflow generation system and the flow of ambient air drawn in by the eductor nozzle to reduce a temperature of the exhaust gas stream.
Abstract:
The present application provides an energy control computing device for adjusting one or more steam flow parameters delivered to a steam turbine from a heat recovery steam generator via a number of control devices. The energy control computing device includes a processor in communication with a memory. The processor is programmed to receive a number of measured operating values, identify steam turbine operating limits, identify a number of candidate operating modes meeting steam turbine operating limits, selecting the candidate operating mode maximizing the steam flow parameters while not exceeding the steam turbine operating limits, and directing the control devices to meet the selected candidate operating mode.
Abstract:
The present application thus provides an active cooling system for a compressor and a turbine of a gas turbine engine. The active cooling system may include an air extraction pipe extending from the compressor to the turbine, a heat exchanger positioned about the air extraction pipe, and an external air cooling system in communication with the air extraction pipe.
Abstract:
A combined cycle power plant (CCPP) includes a heat recovery steam generator (HRSG) that includes a first economizer and a condensate supply line. The HRSG receives a flow of exhaust gas from the turbine section. The CCPP further includes a fuel heating system that has a fuel supply line and a high temperature heat exchanger. The fuel supply line is fluidly coupled to the combustion section. The high temperature heat exchanger is disposed in thermal communication on the fuel supply line. A high temperature input line fluidly couples the high temperature heat exchanger to the first economizer of the HRSG such that the high temperature heat exchanger receives water from the first economizer. A recirculation line fluidly coupling the high temperature heat exchanger to the condensate supply. A hydro turbine is disposed on the recirculation line.
Abstract:
A combined cycle power plant including a gas turbine engine having a compressor inlet and a turbine outlet that is configured to discharge a first exhaust gas stream therefrom. A heat recovery steam generator is configured to receive the first exhaust gas stream, extract heat from the first exhaust gas stream to make steam, and discharge a second exhaust gas stream therefrom. A steam turbine is configured to discharge a steam stream therefrom, a carbon capture system is configured to receive the steam stream, a recirculation blower is configured to pressurize a portion of the second exhaust gas stream for recirculation towards the compressor inlet, and an air inlet blower is configured to pressurize an airflow stream channeled towards the compressor inlet, such that a pressurized mixed flow stream, formed from the portion of the second exhaust gas stream and the airflow stream, is received at the compressor inlet.
Abstract:
A combined cycle power plant (CCPP) includes a heat recovery steam generator (HRSG) that includes a first economizer and a condensate supply line. The HRSG receives a flow of exhaust gas from the turbine section. The CCPP further includes a fuel heating system that has a fuel supply line and a high temperature heat exchanger. The fuel supply line is fluidly coupled to the combustion section. The high temperature heat exchanger is disposed in thermal communication on the fuel supply line. A high temperature input line fluidly couples the high temperature heat exchanger to the first economizer of the HRSG such that the high temperature heat exchanger receives water from the first economizer. A recirculation line fluidly coupling the high temperature heat exchanger to the condensate supply. A hydro turbine is disposed on the recirculation line.
Abstract:
Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective output to match a nominal mega-watt power output value, and subsequently measuring an actual fuel flow value and an actual emissions value for each GT; adjusting at least one of a fuel flow or a water flow for each GT to an adjusted water/fuel ratio in response to the actual emissions value deviating from an emissions level associated with the base load level, while maintaining the respective adjusted output; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual fuel flow value and a nominal fuel flow value at the ambient condition, while maintaining the adjusted water/fuel ratio.
Abstract:
Disclosed herein are systems and methods for protecting a surface from corrosive pollutants. A method includes detecting airborne corrosive pollutants proximate to a surface using at least one sensor adapted to detect a concentration of the airborne corrosive pollutants and/or one or more types of airborne corrosive pollutants, the concentration of the airborne corrosive pollutants being an instantaneous concentration value or a time-weighted-integrated concentration value; selecting a fluid to deliver to at least a portion of the surface based upon a predetermined type and/or concentration of the airborne corrosive pollutants detected by the at least one sensor; and initiating a fluid treatment to deliver the selected fluid such that the selected fluid contacts the at least a portion of the surface.