摘要:
The present invention relates to a cooling water supply system and a cooling water supply method for a fuel cell system in which a temperature difference in a fuel cell stack is prevented from increasing due to a rapid increase of a power output required in the stack by detecting a requested/demanded output. According to the present invention, a temperature difference in the stack due to a rapid increase in a power output demanded by the fuel cell stack is prevented from being rapidly increased by detecting a requested output (e.g., an amount an accelerator pedal is pushed, etc.) to calculate a power output required by the stack, calculating a predicted amount of generated heat depending on a required power output, and calculating a flux of supplied cooling water corresponding to the predicted amount of generated heat to control a flow rate of a cooling water supplier.
摘要:
The present invention relates to a fuel cell cooling system for a vehicle comprising: a cooling water circulating loop formed to cool a fuel cell stack where a plurality of fuel cells are stacked. The cooling water circulating loop includes: a plurality of cooling water introducing ports through which cooling water passing through the stack is introduced; a plurality of cooling water discharging ports corresponding to the plurality of cooling water introducing ports and through which the cooling water which has passed through the stack is discharged; and a plurality of cooling water channels connecting the plurality of cooling introducing ports and the plurality of cooling water discharging ports. Notably, cooling water flows in different directions in the plurality of cooling water channels.
摘要:
An apparatus for injecting a coolant for a fuel cell vehicle is provided. More specifically, a coolant tank stores a coolant and a coolant pump, disposed in a coolant supply line connecting the coolant tank and the stack cooling loop is configured to pressure-transfer the coolant to the stack cooling loop, and circulating the coolant, which has passed through the stack cooling loop, to the coolant tank. A bubble elimination unit, disposed at a rear stage of the coolant pump in the coolant supply line, eliminates the bubbles in the fuel cell stack through vibration. This bubble elimination unit may be configured as an ultrasonic wave excitor for exciting the stack cooling loop with ultrasonic waves.
摘要:
The present invention provides an induction heating device for a fuel cell system, which can rapidly heat coolant during cold start-up, control the power consumption depending on the voltage of a fuel cell stack, and ensure the insulation resistance by separating a heating unit, which is in contact with the coolant, from the outside. That is, the present invention provides an induction heating device for a fuel cell system, in which an insulating housing is provided in a coolant circulation line, a heater for heating coolant is provided in the housing, and a high frequency controller for controlling the power consumption of the heater is provided at the outside of the housing such that the coolant can be rapidly heated during cold start-up, precisely control the power consumption depending of the voltage of a fuel cell stack, and improve the insulation performance by separating the heater as a heating unit, which is in contact with the coolant, and the high frequency controller and a coil as a power unit with respect to the insulating housing.
摘要:
Disclosed is an apparatus for efficiently removing ions contained cooling water used in cooling a fuel cell stack. More specifically, the present invention removes ions by trapping ions contained in cooling water using a permeable membranes capable of making ions selectively pass therethrough and electrodes which are configured to attract ions. The present invention can reduce electric power consumption in pump and can modify the overall performance of the system to cope with various environmental conditions.
摘要:
The present invention provides an induction heating device for a fuel cell system, which can rapidly heat coolant during cold start-up, control the power consumption depending on the voltage of a fuel cell stack, and ensure the insulation resistance by separating a heating unit, which is in contact with the coolant, from the outside. That is, the present invention provides an induction heating device for a fuel cell system, in which an insulating housing is provided in a coolant circulation line, a heater for heating coolant is provided in the housing, and a high frequency controller for controlling the power consumption of the heater is provided at the outside of the housing such that the coolant can be rapidly heated during cold start-up, precisely control the power consumption depending of the voltage of a fuel cell stack, and improve the insulation performance by separating the heater as a heating unit, which is in contact with the coolant, and the high frequency controller and a coil as a power unit with respect to the insulating housing.
摘要:
A thermal management system module for a fuel cell vehicle includes its component parts mounted on a single mounting frame, thus increasing space usage and layout efficiency, reducing overall weight and manufacturing costs and improving piping and wiring efficiency and assembling efficiency of the thermal management system.
摘要:
The present invention relates to a method of preparing an ethylene-α-olefin-diene copolymer and an ethylene-α-olefin-diene copolymer prepared thereby, by using a transition metal compound based on a cyclopenta[b]fluorenyl group as a catalyst.
摘要:
The present invention provides a coolant demineralizer for a fuel cell vehicle, which removes ions, released from a pipe, from coolant of a fuel cell stack. In preferred embodiments, the present invention provides a coolant demineralizer suitably configured to reduce the occurrence of differential pressure due to an ion resin layer such that coolant can smoothly flow through a filter member, thereby increasing the effect of filtering ions and improving the efficiency of use of ion resin.
摘要:
The present invention provides a coolant demineralizer for a fuel cell vehicle, which removes ions, released from a pipe, from coolant of a fuel cell stack. In preferred embodiments, the present invention provides a coolant demineralizer suitably configured to reduce the occurrence of differential pressure due to an ion resin layer such that coolant can smoothly flow through a filter member, thereby increasing the effect of filtering ions and improving the efficiency of use of ion resin.