摘要:
The present invention relates to a method of preparing an ethylene-α-olefin-diene copolymer and an ethylene-α-olefin-diene copolymer prepared thereby, by using a transition metal compound based on a cyclopenta[b]fluorenyl group as a catalyst.
摘要:
The present invention relates to a negative electrode active material for an electrode mixture, and to an electrochemical cell comprising the negative electrode active material, wherein the negative electrode active material comprises an amorphous carbonaceous material and a doping element, and exhibits, in the temperature range of 450° C. to 950° C., at least two peaks of derivative weight change calculated by thermogravimetric analysis, and exhibits a maximum heat peak output of 20 mW to 60 mW as measured by differential scanning calorimetry.
摘要:
Disclosed is a method for forming a polysilicon plug of a semiconductor device. The method comprises the steps of: forming a stacked pattern of a wordline and a hard mask film on a semiconductor substrate comprising a cell region and a peripheral circuit region; forming a spacer on a sidewall of the stacked pattern; forming an interlayer insulating film on the semiconductor substrate; polishing the interlayer insulating film via a CMP process using the hard mask film as a polishing barrier film; forming a barrier film on the semiconductor substrate including the interlayer insulating film; selectively etching the barrier film and the interlayer insulating film to form a landing plug contact hole; depositing a polysilicon film filling the landing plug contact hole on the semiconductor substrate; blanket-etching the polysilicon film using the barrier film as an etching barrier film; and polishing the polysilicon film and the barrier film using the hard mask film as a polishing barrier film to form a polysilicon plug.
摘要:
CMP slurries for oxide film and a method for forming a metal line contact plug of a semiconductor device are described herein. When a polishing process of a multi-layer film is performed by using the disclosed CMP slurry for oxide film including an HXOn compound (wherein n is an integer from 1 to 4), a stable landing plug poly can be formed by preventing step differences by reducing interlayer polishing speed differences.
摘要翻译:本文描述了用于氧化物膜的CMP浆料和用于形成半导体器件的金属线接触插塞的方法。 当通过使用所公开的包括HXO N n化合物(其中n是1至4的整数)的氧化物膜的CMP浆料进行多层膜的抛光工艺时,稳定的着色插塞聚 可以通过减少层间抛光速度差来防止台阶差来形成。
摘要:
A method for the formation of a gate electrode with a uniform thickness in the semiconductor device by using a difference in polishing selection ratio between a polymer and an oxide film. The method includes steps of depositing a polymer layer on a semiconductor substrate; selectively etching the polymer layer to form a patterned polymer; forming an insulating oxide film for planarization; applying a CMP process to the insulating oxide film; removing the patterned polymer to define an opening with its bottom exposed to the substrate; forming a gate insulating film on the substrate within the opening; depositing an electrically conducting film to bury the opening; applying the CMP process to the electrically conducting film to allow it to remain only within the opening; removing a portion of the electrically conducting film formed within the opening by etching; depositing a mask nitride film to bury the top of the electrically conducting film; and applying the CMP process to the mask nitride film until the insulating oxide film is exposed.
摘要:
The present invention relates to a new transition metal compound based on cyclopenta[b]fluorenyl group, a transition metal catalyst composition containing the same and having high catalytic activity for preparing an ethylene homopolymer or a copolymer of ethylene and one α-olefin, a method of preparing an ethylene homopolymer or a copolymer of ethylene and α-olefin using the same, and the prepared ethylene homopolymer or the copolymer of ethylene and α-olefin.
摘要:
Disclosed herein are a CMP slurry composition with high-planarity and a CMP process for polishing a dielectric film using the same. More specifically, a CMP slurry composition with high-planarity includes a carbon compound having tens of thousands of carboxyl groups and having a molecular weight ranging from hundreds of thousands to millions, an abrasive, and water. A CMP process for polishing a dielectric film utilizes the disclosed slurry composition. The slurry composition enables complete and overall planarization of the dielectric film by polishing the part of the film having a higher step difference through CMP process. Accordingly, the disclosed slurry composition is useful for the CMP process of all semiconductor devices including those having ultrafine patterns.
摘要:
The present invention relates to a negative electrode active material for an electrode mixture, and to an electrochemical cell comprising the negative electrode active material, wherein the negative electrode active material comprises an amorphous carbonaceous material and a doping element, and exhibits, in the temperature range of 450° C. to 950° C., at least two peaks of derivative weight change calculated by thermogravimetric analysis, and exhibits a maximum heat peak output of 20 mW to 60 mW as measured by differential scanning calorimetry.
摘要:
Disclosed are a negative active material for a lithium secondary battery and a lithium secondary battery including same. The negative active material for a lithium secondary battery includes an amorphous carbon material, with a tap density of 0.7 to 1.5 g/cm3 and an angle of repose of 15 to 55 degrees.
摘要翻译:公开了锂二次电池的负极活性物质和包含锂二次电池的锂二次电池。 用于锂二次电池的负极活性材料包括无定形碳材料,振实密度为0.7至1.5g / cm 3,休止角为15至55度。
摘要:
In a substrate protecting member and a method of forming an analysis sample using the same, the substrate protecting member includes a protective layer attached to a semiconductor substrate to protect a defect portion of the semiconductor substrate and a sensing line including first, second and third conductive lines located on the protective layer. The first conductive line extends in a first direction. The second conductive line extends to an edge of the protective layer in a second direction different from the first direction. The second and third conductive lines are electrically connected to first and second end portions of the first conductive line, respectively. The third conductive line extends to an edge of the protective layer in the second direction.