摘要:
A structure is provided which includes at least one semiconductor device and a diffusion heater in a continuous active semiconductor area of a substrate. One or more semiconductor devices are provided in a first region of the active semiconductor area and a diffusion heater is disposed adjacent thereto which consists essentially of a semiconductor material included in the active semiconductor area. Conductive isolation between the first region and the diffusion heater is achieved through use of a separating gate. The separating gate overlies an intermediate region of the active semiconductor area between the first region and the diffusion heater and the separating gate is biasable to conductively isolate the first region from the diffusion heater.
摘要:
A method comprises determining a poly-gate temperature for a given device and determining channel temperatures of monitor devices. The method further includes extrapolating channel temperatures of the monitor devices to obtain a channel temperature for the given device. The difference in temperature (ΔT value) is determined for the given device based on the poly-gate temperature and the channel temperature. A device comprises a heating device having a poly gate with at least one contact at each end thereof and a plurality of monitor device spaced at known distances from the heating device
摘要:
A method and apparatus for dynamic characterization of reliability wearout mechanisms is disclosed. The system comprises an integrated circuit incorporating a device under test to be measured, structure for inputting a waveform to the device under test for a first predetermined time interval, structure for disabling the inputting of the waveform to the device under test, structure for measuring one or more fundamental parameters of the device under test after a second predetermined time interval, and structure for calculating an aging estimate of the device under test without the influence of recovery effect based on the one or more measured fundamental parameters. The time between stressing and measurement is precisely controlled, providing for repeatable experiments, and serves to minimize measurement error caused by recovery effects.
摘要:
A method and apparatus for dynamic characterization of reliability wearout mechanisms is disclosed. The system comprises an integrated circuit incorporating a device under test to be measured, structure for inputting a waveform to the device under test for a first predetermined time interval, structure for disabling the inputting of the waveform to the device under test, structure for measuring one or more fundamental parameters of the device under test after a second predetermined time interval, and structure for calculating an aging estimate of the device under test without the influence of recovery effect based on the one or more measured fundamental parameters. The time between stressing and measurement is precisely controlled, providing for repeatable experiments, and serves to minimize measurement error caused by recovery effects.
摘要:
A method comprises determining a poly-gate temperature for a given device and determining channel temperatures of monitor devices. The method further includes extrapolating channel temperatures of the monitor devices to obtain a channel temperature for the given device. The difference in temperature (ΔT value) is determined for the given device based on the poly-gate temperature and the channel temperature. A device comprises a heating device having a poly gate with at least one contact at each end thereof and a plurality of monitor device spaced at known distances from the heating device
摘要:
A through-substrate via (TSV) structure includes at least two electrically conductive via segments embedded in a substrate and separated from each other by an electrically conductive barrier layer therebetween. The length of each individual conductive via segment is typically equal to, or less than, the Blech length of the conductive material so that the stress-induced back flow force, generated by each conductive barrier layer, cancels the electromigration force in each conductive via segment. Consequently, the TSV structures are immune to electromigration, and provide reliable electrical connections among a chips stacked in 3 dimensions.
摘要:
A through-substrate via (TSV) structure includes at least two electrically conductive via segments embedded in a substrate and separated from each other by an electrically conductive barrier layer therebetween. The length of each individual conductive via segment is typically equal to, or less than, the Blech length of the conductive material so that the stress-induced back flow force, generated by each conductive barrier layer, cancels the electromigration force in each conductive via segment. Consequently, the TSV structures are immune to electromigration, and provide reliable electrical connections among a chips stacked in 3 dimensions.
摘要:
A through-substrate via (TSV) structure includes at least two electrically conductive via segments embedded in a substrate and separated from each other by an electrically conductive barrier layer therebetween. The length of each individual conductive via segment is typically equal to, or less than, the Blech length of the conductive material so that the stress-induced back flow force, generated by each conductive barrier layer, cancels the electromigration force in each conductive via segment. Consequently, the TSV structures are immune to electromigration, and provide reliable electrical connections among a chips stacked in 3 dimensions.
摘要:
A through-substrate via (TSV) structure includes at least two electrically conductive via segments embedded in a substrate and separated from each other by an electrically conductive barrier layer therebetween. The length of each individual conductive via segment is typically equal to, or less than, the Blech length of the conductive material so that the stress-induced back flow force, generated by each conductive barrier layer, cancels the electromigration force in each conductive via segment. Consequently, the TSV structures are immune to electromigration, and provide reliable electrical connections among a chips stacked in 3 dimensions.
摘要:
A method of determining the effect of the degradation of MOSFET on the frequency of a Ring Oscillator (RO) consisting of an odd prime number of inverter stages, each of the inverters stages having an NMOS and a PMOS field-effect transistor is described. The method includes the steps of: a) selecting one inverter from the inverter stages of the RO, the selected inverter having testable nodes, the testable nodes being connected to inputs and outputs of the NMOS and a PMOS field-effect transistors (FET) forming the selected inverter; b) simultaneously stressing under a set of stress conditions 1) all of the NMOS FETs of each of the inverter stages, 2) all of the PMOS FETs, and 3) all of the NMOS FETs and PMOS FETs in the RO; c) measuring a shift in selected device parameters in the selected inverter; d) measuring a frequency degradation of the entire RO; and e) establishing a relationship between the shift in the device parameters and the frequency degradation and relating the relationship to a known degradation mechanism Furthermore, on-chip pass gates controlled by appropriate off-chip DC voltage signals, allow parallel DC stressing, as well as forcing an off-chip AC voltage waveform to a given MOSFET type device (either PMOSFET or NMOSFET) on every inverter stage of the RO. The RO circuit makes it possible to investigate the effect on the RO frequency degradation, caused by any DC MOSFET degradation mechanism as well as by any external AC voltage waveform known to be representative of a critical circuit operation. Thus, the dependence of the RO frequency on device degradation mechanisms activated during a critical circuit operation can be carefully investigated and quantified.