Abstract:
A system and method for detection of colorimetric abnormalities within a body lumen includes an image receiver for receiving images from within the body lumen. Also included are a transmitter for transmitting the images to a receiver, and a processor for generating a probability indication of presence of colorimetric abnormalities on comparison of color content of the images and at least one reference value.
Abstract:
A system and method for detection of calorimetric abnormalities within a body lumen includes an image receiver for receiving images from within the body lumen. Also included are a transmitter for transmitting the images to a receiver, and a processor for generating a probability indication of presence of colorimetric abnormalities on comparison of color content of the images and at least one reference value.
Abstract:
An in-vivo imaging device including a camera may include a frame storage device. Systems and methods which vary the frame capture rate of the camera and/or frame display rate of the display unit of in-vivo camera systems are discussed. The capture rate is varied based on for example, a physical quantity experienced by the camera system, or physical measurements related to the motion of the camera. Alternatively, the frame capture rate is varied based on comparative image processing of a plurality of frames. The frame display rate of the system may be varied based on comparative image processing of a multiplicity of frames. Both the frame capture and the frame display rates of such systems can be varied concurrently.
Abstract:
An in-vivo imaging device including a camera may include a frame storage device. Systems and methods which vary the frame capture rate of the camera and/or frame display rate of the display unit of in-vivo camera systems are discussed. The capture rate is varied based on for example, a physical quantity experienced by the camera system, or physical measurements related to the motion of the camera. Alternatively, the frame capture rate is varied based on comparative image processing of a plurality of frames. The frame display rate of the system may be varied based on comparative image processing of a multiplicity of frames. Both the frame capture and the frame display rates of such systems can be varied concurrently.
Abstract:
An in-vivo imaging device including a camera may include a frame storage device. Systems and methods which vary the frame capture rate of the camera and/or frame display rate of the display unit of in-vivo camera systems are discussed. The capture rate is varied based on for example, a physical quantity experienced by the camera system, or physical measurements related to the motion of the camera. Alternatively, the frame capture rate is varied based on comparative image processing of a plurality of frames. The frame display rate of the system may be varied based on comparative image processing of a multiplicity of frames. Both the frame capture and the frame display rates of such systems can be varied concurrently.