Abstract:
The described invention provides self-forming compositions as positive electrode materials. The described invention further provides electrode compositions related to an electrochemical energy storage cell comprising a metal, a glass former and lithium fluoride.
Abstract:
The described invention provides compositions related to an electronically insulating amorphous or nanocrystalline mixed ionic conductor composition comprising a metal fluoride composite to which an electrical potential is applied to form 1) a negative electrode, and 2) a positive electrode, wherein the negative electrode and positive electrode are formed in situ.
Abstract:
The present invention relates to primary and secondary electrochemical energy storage systems, particularly to such systems as battery cells, which use materials that take up and release ions as a means of storing and supplying electrical energy. The present positive electrode composition comprises a nanocrystalline bismuth fluoride compound, which comprises Bi+3, and has a maximum energy density of 7170 Wh/l−1.
Abstract translation:本发明涉及一次和二次电化学能量储存系统,特别涉及诸如电池单元的系统,其使用吸收和释放离子作为存储和供应电能的手段的材料。 本发明的正极组合物包含含有Bi + 3的纳米晶铋氟化物,其最大能量密度为7170Wh / l -1。
Abstract:
The present invention relates to in situ formation of a single-layered electrochemical cell comprising a full tri-layer battery structure containing a discrete positive electrode, solid state electrolyte, and negative electrode from self-assembled nanocomposites. The single layered cell makes it possible to fabricate cells in three dimensions resulting in a very high energy density power source within very small and/or complex dimensions.
Abstract:
The present invention relates to primary and secondary electrochemical energy storage systems, particularly to such systems as battery cells, which use materials that take up and release ions as a means of storing and supplying electrical energy.
Abstract:
The described invention provides compositions related to an electronically insulating amorphous or nanocrystalline mixed ionic conductor composition comprising a metal fluoride composite to which an electrical potential is applied to form 1) a negative electrode, and 2) a positive electrode, wherein the negative electrode and positive electrode are formed in situ.
Abstract:
The present invention relates to in situ formation of a single-layered electrochemical cell comprising a full tri-layer battery structure containing a discrete positive electrode, solid state electrolyte, and negative electrode from self-assembled nanocomposites. The single layered cell makes it possible to fabricate cells in three dimensions resulting in a very high energy density power source within very small and/or complex dimensions.
Abstract:
A safe and economical electrochemically active material useful in rechargeable battery cell electrode compositions comprises a nanostructure amalgam of a transition metal fluoride and carbon. The nanoamalgam may be prepared by subjecting a precursor mixture of a transition metal fluoride, such as FeF3, and carbon to extreme, high energy impact comminution milling which results in the conversion of the mixture to a unique and distinct nanostructure material. When incorporated as active electrode material in lithium battery cell fabrications, the nanoamalgam enables the attainment of stable specific discharge capacities in the range of 250 to 500 mAh/g.
Abstract:
Supercapacitor cell electrode and separator elements formulated as membranes of plasticized polymers matrix compositions are laminated with electrically conductive current collector elements to form flexible, unitary supercapacitor structures. The matrix plasticizer component is extracted from the laminate with polymer-inert solvent and replaced with electrolyte solution to activate the supercapacitor. Various arrangements of cell structure elements provide parallel and series cell structures which yield improved specific energy capacity and increased voltage output for utilization demands. The supercapacitor elements may also be laminated with similar polymeric rechargeable battery cell structures to provide hybrid devices capable of delivering both high energy and high power as needed in electronic systems.
Abstract:
An apparatus and method for monitoring structural changes of an electrode in a rechargeable battery include an in situ x-ray study electrochemical cell holder (30) comprising top and bottom cell holder members (32, 34) including at least one beryllium window element (36) for transmission of diffractometer x-radiation. A rechargeable battery cell (43) mounted within the x-ray cell holder enclosure comprises an electrolyte/separator element (68) interposed between positive and negative electrodes (64, 66). A current collector element (70) formed of an electrically-conductive open-mesh grid is disposed between the positive electrode and the separator to enable ion-conducting contact of the electrode and separator while maintaining electrical continuity between the electrode and an external x-ray cell holder terminal (54). As a result of this arrangement, the positive electrode need not contact the window element to establish an electrical battery circuit, but may be sufficiently spaced from the window to avoid electrolytic corrosion of the beryllium element. The in situ x-ray electrochemical cell holder and battery cell structure allow for continuous monitoring of the structural changes in electrode materials during charge/discharge cycling.